Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "predictive filter" wg kryterium: Wszystkie pola


Wyświetlanie 1-2 z 2
Tytuł:
Nonlinear state-space predictive control with on-line linearisation and state estimation
Autorzy:
Ławryńczuk, M.
Powiązania:
https://bibliotekanauki.pl/articles/330330.pdf
Data publikacji:
2015
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
process control
model predictive control
nonlinear state space model
extended Kalman filter
online linearization
proces sterowania
model sterowania predykcyjnego
model przestrzeni stanów
rozszerzony filtr Kalmana
Opis:
This paper describes computationally efficient model predictive control (MPC) algorithms for nonlinear dynamic systems represented by discrete-time state-space models. Two approaches are detailed: in the first one the model is successively linearised on-line and used for prediction, while in the second one a linear approximation of the future process trajectory is directly found on-line. In both the cases, as a result of linearisation, the future control policy is calculated by means of quadratic optimisation. For state estimation, the extended Kalman filter is used. The discussed MPC algorithms, although disturbance state observers are not used, are able to compensate for deterministic constant-type external and internal disturbances. In order to illustrate implementation steps and compare the efficiency of the algorithms, a polymerisation reactor benchmark system is considered. In particular, the described MPC algorithms with on-line linearisation are compared with a truly nonlinear MPC approach with nonlinear optimisation repeated at each sampling instant.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2015, 25, 4; 833-847
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Disturbance modeling and state estimation for offset-free predictive control with state-space process models
Autorzy:
Tatjewski, P.
Powiązania:
https://bibliotekanauki.pl/articles/330146.pdf
Data publikacji:
2014
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
model predictive control
state space model
disturbance rejection
state observer
Kalman filter
sterowanie predykcyjne
model przestrzeni stanów
eliminacja zakłóceń
obserwator stanu
filtr Kalmana
Opis:
Disturbance modeling and design of state estimators for offset-free Model Predictive Control (MPC) with linear state-space process models is considered in the paper for deterministic constant-type external and internal disturbances (modeling errors). The application and importance of constant state disturbance prediction in the state-space MPC controller design is presented. In the case with a measured state, this leads to the control structure without disturbance state observers. In the case with an unmeasured state, a new, simpler MPC controller-observer structure is proposed, with observation of a pure process state only. The structure is not only simpler, but also with less restrictive applicability conditions than the conventional approach with extended process-and-disturbances state estimation. Theoretical analysis of the proposed structure is provided. The design approach is also applied to the case with an augmented state-space model in complete velocity form. The results are illustrated on a 2 x 2 example process problem.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2014, 24, 2; 313-323
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies