Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Muhammed, A." wg kryterium: Wszystkie pola


Wyświetlanie 1-2 z 2
Tytuł:
A linearization-based hybrid approach for 3D reconstruction of objects in a single image
Autorzy:
Kotan, Muhammed
Öz, Cemil
Kahraman, Abdulgani
Powiązania:
https://bibliotekanauki.pl/articles/2055171.pdf
Data publikacji:
2021
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
3D reconstruction
shape from shading
shape recovery
image comparison
surface inspection
rekonstrukcja 3D
odzyskiwanie kształtu
porównywanie obrazów
inspekcja powierzchni
Opis:
The shape-from-shading (SFS) technique uses the pattern of shading in images in order to obtain 3D view information. By virtue of their ease of implementation, linearization-based SFS algorithms are frequently used in the literature. In this study, Fourier coefficients of central differences obtained from gray-level images are employed, and two basic linearization-based algorithms are combined. By using the functionally generated surfaces and 3D reconstruction datasets, the hybrid algorithm is compared with linearization-based approaches. Five different evaluation metrics are applied on recovered depth maps and the corresponding gray-level images. The results on defective sample surfaces are also included to show the effect of the algorithm on surface reconstruction. The proposed method can prevent erroneous estimates on object boundaries and produce satisfactory 3D reconstruction results in a low number of iterations.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2021, 31, 3; 501--513
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A nested autoencoder approach to automated defect inspection on textured surfaces
Autorzy:
Oz, Muhammed Ali Nur
Kaymakci, Ozgur Turay
Mercimek, Muharrem
Powiązania:
https://bibliotekanauki.pl/articles/2055170.pdf
Data publikacji:
2021
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
autoencoder
defect detection
automatic visual inspection
deep learning
autoenkoder
wykrywanie defektów
inspekcja wizyjna
inspekcja automatyczna
uczenie głębokie
Opis:
In recent years, there has been a highly competitive pressure on industrial production. To keep ahead of the competition, emerging technologies must be developed and incorporated. Automated visual inspection systems, which improve the overall mass production quantity and quality in lines, are crucial. The modifications of the inspection system involve excessive time and money costs. Therefore, these systems should be flexible in terms of fulfilling the changing requirements of high capacity production support. A coherent defect detection model as a primary application to be used in a real-time intelligent visual surface inspection system is proposed in this paper. The method utilizes a new approach consisting of nested autoencoders trained with defect-free and defect injected samples to detect defects. Making use of two nested autoencoders, the proposed approach shows great performance in eliminating defects. The first autoencoder is used essentially for feature extraction and reconstructing the image from these features. The second one is employed to identify and fix defects in the feature code. Defects are detected by thresholding the difference between decoded feature code outputs of the first and the second autoencoder. The proposed model has a 96% detection rate and a relatively good segmentation performance while being able to inspect fabrics driven at high speeds.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2021, 31, 3; 515--523
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies