Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "konwolucyjna sieć neuronowa" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Segmentation of cancer masses on breast ultrasound images using modified U-net
Segmentacja mas nowotworowych na obrazach ultrasonografii piersi z użyciem zmodyfikowanego modelu U-net
Autorzy:
Khallassi, Ihssane
El Yousfi Alaoui, My Hachem
Jilbab, Abdelilah
Powiązania:
https://bibliotekanauki.pl/articles/27315434.pdf
Data publikacji:
2023
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
convolutional neural network
segmentation
u-net
residual neural network
konwolucyjna sieć neuronowa
segmentacja
rezydualna sieć neuronowa
Opis:
Breast cancer causes a huge number of women’s deaths every year. The accurate localization of a breast lesion is a crucial stage. The segmentation of breast ultrasound images participates in the improvement of the process of detection of breast anomalies. An automatic approach of segmentation of breast ultrasound images is presented in this paper, the proposed model is a modified u-net called Attention Residual U-net, designed to help radiologists in their clinical examination to determine adequately the limitation of breast tumors. Attention Residual U-net is a combination of existing models (Convolutional Neural Network U-net, the Attention Gate Mechanism and the Residual Neural Network). Public breast ultrasound images dataset of Baheya hospital in Egypt is used in this work. Dice coefficient, Jaccard index and Accuracy are used to evaluate the performance of the proposed model on the test set. Attention residual u-net can significantly give a dice coefficient = 90%, Jaccard index = 76% and Accuracy = 90%. The proposed model is compared with two other breast segmentation methods on the same dataset. The results show that the modified U-net model was able to achieve accurate segmentation of breast lesions in breast ultrasound images.
Każdego roku rak piersi powoduje ogromną liczbę zgonów kobiet. Dokładna lokalizacja zmiany piersi jest kluczowym etapem. Segmentacja obrazów ultrasonograficznych piersi przyczynia się do poprawy procesu wykrywania nieprawidłowości piersi. W tym artykule przedstawiono automatyczne podejście do segmentacji obrazów ultrasonograficznych piersi, proponowany model to zmodyfikowany U-net, nazwany Attention Residual U-net, zaprojektowany w celu wspomagania radiologów podczas badania klinicznego, w celu odpowiedniego określenia zasięgu guzów piersiowych. Attention Residual U-net jest połączeniem istniejących modeli (konwolucyjną siecią neuronową U-net, Attention Gate Mechanism i Residual Neural Network). W tym badaniu wykorzystano publiczny zbiór danych obrazów ultrasonograficznych piersi szpitala Baheya w Egipcie. Do oceny wydajności zaproponowanego modelu na zbiorze testowym wykorzystano współczynnik Dice'a, indeks Jaccarda i dokładność. Attention Residual U-net może znacznie przyczynić się do uzyskania współczynnika Dice'a równego 90%, indeksu Jaccarda równego 76% i dokładności równiej 90%. Proponowany model został porównany z dwoma innymi metodami segmentacji piersi na tym samym zbiorze danych. Wyniki pokazują, że zmodyfikowany model U-net był w stanie osiągnąć dokładną segmentację zmian piersiowych na obrazach ultrasonograficznych piersi.
Źródło:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska; 2023, 13, 3; 11--15
2083-0157
2391-6761
Pojawia się w:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Implementation of an artificial intelligence-based ECG acquisition system for the detection of cardiac abnormalities
Wdrożenie systemu pozyskiwania EKG opartego na sztucznej inteligencji w celu wykrywania nieprawidłowości serca
Autorzy:
Benba, Achraf
El Attaoui, Fatima Zahra
Sandabad, Sara
Powiązania:
https://bibliotekanauki.pl/articles/27315375.pdf
Data publikacji:
2023
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
electrocardiogram
arrhythmias
artificial intelligence
convolution neural network
elektrokardiogram
arytmia
sztuczna inteligencja
konwolucyjna sieć neuronowa
Opis:
The electrocardiogram (ECG) is a common test that measures the electrical activity of the heart. On the ECG, several cardiac abnormalities can be seen, including arrhythmias, which are one of the major causes of cardiac mortality worldwide. The objective for the research community is accurate and automated cardiovascular analysis, especially given the maturity of artificial intelligence technology and its contribution to the health area. The goal of this effort is to create an acquisition system and use artificial intelligence to classify ECG readings. This system is designed in two parts: the first is the signal acquisition using the ECG Module AD8232; the obtained signal is a single derivation that has been amplified and filtered. The second section is the classification for heart illness identification; the suggested model is a deep convolutional neural network with 12 layers that was able to categorize five types of heartbeats from the MIT-BIH arrhythmia database. The results were encouraging, and the embedded system was built.
Elektrokardiogram (EKG) to powszechny test, który mierzy aktywność elektryczną serca. W zapisie EKG można zauważyć kilka nieprawidłowości serca, w tym arytmie, które są jedną z głównych przyczyn śmiertelności sercowej na całym świecie. Celem społeczności naukowej jest dokładna i zautomatyzowana analiza układu sercowo-naczyniowego, zwłaszcza biorąc pod uwagę dojrzałość technologii sztucznej inteligencji i jej wkład w obszar zdrowia. Celem tych wysiłków jest stworzenie systemu akwizycji i wykorzystanie sztucznej inteligencji do klasyfikacji odczytów EKG. System ten składa się z dwóch części: pierwsza to akwizycja sygnału za pomocą modułu EKG AD8232; uzyskany sygnał jest pojedynczą pochodną, która została wzmocniona i przefiltrowana. Druga sekcja to klasyfikacja identyfikacji chorób serca; sugerowany model to głęboka konwolucyjna sieć neuronowa z 12 warstwami, która była w stanie sklasyfikować pięć typów uderzeń serca z bazy danych arytmii MIT-BIH. Wyniki były zachęcające i zbudowano system wbudowany.
Źródło:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska; 2023, 13, 1; 22--25
2083-0157
2391-6761
Pojawia się w:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Сross platform tools for modeling and recognition of the fingerspelling alphabet of gesture language
Сross-platformowe narzędzia do modelowania i rozpoznawania alfabetu palcowego języka gestów
Autorzy:
Kondratiuk, Serhii S.
Krak, Iurii V.
Wójcik, Waldemar
Powiązania:
https://bibliotekanauki.pl/articles/408302.pdf
Data publikacji:
2019
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
cross-platform
sign language
fingerspelling alphabet
3D modeling
Convolutional Neural Networks
język migowy
alfabet palcowy
modelowanie 3D
konwolucyjna sieć neuronowa
Opis:
A solution for the problems of the finger spelling alphabet of gesture language modelling and recognition based on cross-platform technologies is proposed. Modelling and recognition performance can be flexible and adjusted, based on the hardware it operates or based on the availability of an internet connection. The proposed approach tunes the complexity of the 3D hand model based on the CPU type, amount of available memory and internet connection speed. Sign recognition is also performed using cross-platform technologies and the tradeoff in model size and performance can be adjusted. the methods of convolutional neural networks are used as tools for gestures of alphabet recognition. For the gesture recognition experiment, a dataset of 50,000 images was collected, with 50 different hands recorded, with almost 1,000 images per each person. The experimental researches demonstrated the effectiveness of proposed approaches.
Zaproponowano rozwiązanie problemów z alfabetem daktylograficznym w modelowaniu języka gestów i rozpoznawaniu znaków w oparciu o technologie wieloplatformowe. Wydajność modelowania i rozpoznawania może być elastyczna i dostosowana, w zależności od wykorzystywanego sprzętu lub dostępności łącza internetowego. Proponowane podejście dostosowuje złożoność modelu 3D dłoni w zależności od typu procesora, ilości dostępnej pamięci i szybkości połączenia internetowego. Rozpoznawanie znaków odbywa się również z wykorzystaniem technologii międzyplatformowych, a kompromis w zakresie wielkości modelu i wydajności może być dostosowany. Jako narzędzia do rozpoznawania gestów alfabetu wykorzystywane są metody konwolucyjnych sieci neuronowych. Na potrzeby eksperymentu rozpoznawania gestów zebrano zbiór danych obejmujący 50 000 obrazów, przy czym zarejestrowano 50 różnych rąk, a na każdą osobę przypadało prawie 1000 obrazów. Badania eksperymentalne wykazały skuteczność proponowanego podejścia.
Źródło:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska; 2019, 9, 2; 24-27
2083-0157
2391-6761
Pojawia się w:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Using neural networks and deep learning algorithms in electrical impedance tomography
Zastosowanie sieci neuronowych i algorytmów głębokiego uczenia w elektrycznej tomografii impedancyjnej
Autorzy:
Kłosowski, G.
Rymarczyk, T.
Powiązania:
https://bibliotekanauki.pl/articles/408307.pdf
Data publikacji:
2017
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
imaging tomography
multilayer perceptron
deep learning
convolutional neural networks
tomografia obrazowa
perceptron wielowarstwowy
uczenie głębokie
sieć neuronowa konwolucyjna
Opis:
This paper refers to the cases of the use of Artificial Neural Networks and Convolutional Neural Networks in impedance tomography. Machine Learning methods can be used to teach computers different technical problems. The efficient use of conventional artificial neural networks in tomography is possible able to effectively visualize objects. The first step of implementation Deep Learning methods in Electrical Impedance Tomography was performed in this work.
W artykule zaprezentowano dwa przypadki dotyczące zastosowania sztucznych sieci neuronowych i konwolucyjnych sieci neuronowych w tomografii impedancyjnej. Uczenie maszynowe może znaleźć zastosowanie przy rozwiązywaniu różnorodnych problemów technicznych. W tomograficznej rekonstrukcji obrazów można stosować konwencjonalne sieci neuronowe. W niniejszej pracy przedstawiono przykład zastosowania metod głębokiego uczenia w obszarze elektrycznej tomografii impedancyjnej.
Źródło:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska; 2017, 7, 3; 99-102
2083-0157
2391-6761
Pojawia się w:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies