Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "klasyfikacja" wg kryterium: Temat


Tytuł:
Klasyfikacja stanu procesu spalania na podstawie analizy obrazu płomienia
Combustion process state classification based on flame image analysis
Autorzy:
Sawicki, D.
Powiązania:
https://bibliotekanauki.pl/articles/407700.pdf
Data publikacji:
2016
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
płomień
spalanie
klasyfikacja obrazów
flame
combustion
image classification
Opis:
W pracy przedstawiono porównanie wybranych metod klasyfikacji obrazów dla współspalania pyłu węglowego i biomasy. Zdefiniowano dwie klasy spalania: stabilne i niestabilne dla dziewięciu wariantów z różnymi parametrami mocy oraz stałą ilością biomasy. Wyniki badań pokazują, poprawną klasyfikację obrazów dla założonych wariantów. Najlepsze wyniki uzyskano dla klasyfikatora K-NN z parametrem K = 7.
This paper presents comparison image classification method of cofiring biomass and pulverized coal. Defined two class of combustion: stable and unstable for nine variants with different power value parameters and fixed amount biomass. Experimental results show that achieved correct classification of images for the assumed variants. The best results were obtained with K-NN classifier (parameter K = 7).
Źródło:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska; 2016, 4; 77-80
2083-0157
2391-6761
Pojawia się w:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Flame monitoring using image classification
Monitorowanie płomienia z wykorzystaniem klasyfikacji obrazów
Autorzy:
Sawicki, D.
Powiązania:
https://bibliotekanauki.pl/articles/407727.pdf
Data publikacji:
2016
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
flame
combustion
image classification
płomień
spalanie
klasyfikacja obrazów
Opis:
This paper presents comparison of image classification methods for co-firing biomass and pulverized coal. Two classes of combustion – stable and unstable were defined for nine variants with different power value parameters and fixed amount biomass. Experimental results show that correct classification of images was achieved for the assumed variants.
W pracy przedstawiono porównanie wybranych metod klasyfikacji obrazów dla współspalania pyłu węglowego i biomasy. Zdefiniowano dwie klasy spalania: stabilne i niestabilne dla dziewięciu wariantów z różnymi parametrami mocy oraz stałą ilością biomasy. Wyniki badań pokazują, poprawną klasyfikację obrazów dla założonych wariantów.
Źródło:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska; 2016, 1; 37-40
2083-0157
2391-6761
Pojawia się w:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Usage of artificial neural networks in the diagnosis of knee joint disorders
Zastosowanie sztucznych sieci neuronowych w diagnozie schorzeń stawu kolanowego
Autorzy:
Witkowski, Konrad
Wieczorek, Mikołaj
Powiązania:
https://bibliotekanauki.pl/articles/27315456.pdf
Data publikacji:
2023
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
classification
MRI images
Resnet
Alexnet
klasyfikacja
zdjęcia MRI
Opis:
Following article address the issue of automatic knee disorder diagnose with usage of neural networks. We proposed several hybrid neuralnet architectures which aim to successfully classify abnormalityusing MRI (magnetic resonance imaging) images acquired from publicly available dataset. To construct such combinations of modelswe used pretrainedAlexnet, Resnet18 and Resnet34 downloaded from Torchvision. Experiments showedthat for certain abnormalities our models can achieve up to 90% accuracy.
Niniejszy artykuł porusza temat automatycznej diagnozy uszkodzenia stawu kolanowego z zastosowaniem sieci neuronowych. Zaproponowanokilka hybrydowych sieci neuronowych, które podjęły próbę poprawnej klasyfikacji nieprawidłowości wykorzystując zdjęcia rezonansu magnetycznego pochodzące z publicznie dostępnego zbioru. Do konstrukcjikombinacji sieci skorzystanoz pretrenowanych modeli (Alexnet, Resnet18, Resnet34) pobranychz Torchvision. Eksperyment pokazał, że dla klasyfikacji niektórych schorzeń modele osiągnęły nawet 90% skuteczności.
Źródło:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska; 2023, 13, 4; 11--14
2083-0157
2391-6761
Pojawia się w:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modified, complemented taxonomy of faults in fault-tolerant real-time systems
Zmodyfikowana, uzupełniona taksonomia usterek w tolerujących awarie systemach czasu rzeczywistego
Autorzy:
Mosorov, V.
Panskyi, T.
Biedron, S.
Powiązania:
https://bibliotekanauki.pl/articles/408579.pdf
Data publikacji:
2018
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
fault
taxonomy
classification
dependability
usterka
taksonomia
klasyfikacja
słowność
Opis:
This paper presents the main definitions relating to dependability. Basic definitions including reliability, security, maintainability, etc. are described first. They are then supplemented by additional definitions, which address to the threats of dependability (faults, errors, failures). Overlapping dependability standards, renumbering and integration can cause uncertainty when using of a certain definition. For this purpose, authors present complemented fault taxonomy for fault-tolerant real-time systems to eliminate inconsistencies and to unify existing fault taxonomies.
W artykule przedstawiono najważniejsze definicje dotyczące słowności. Podstawowe definicje w tym niezawodność, bezpieczeństwo, obsługiwalność, itp. opisane są w pierwszej kolejności. Następnie są one uzupełniane dodatkowymi definicjami, które odnoszą się do zagrożeń słowności (usterki, błędy, awarie). Nakładające się standardy słowności, renumeracja i integracja mogą spowodować niepewność przy korzystaniu z pewnych definicji. W tym celu autorzy przedstawiają uzupełnioną taksonomię usterek w tolerujących błędy systemach czasu rzeczywistego. Celem jest wyeliminowanie niespójności oraz unifikacji istniejących taksonomii usterek.
Źródło:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska; 2018, 8, 2; 46-49
2083-0157
2391-6761
Pojawia się w:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Comparison of the influence of standardization and normalization of data on the effectiveness of spongy tissue texture classification
Porównanie wpływu standaryzacji i normalizacji danych na skuteczność klasyfikacji tekstury tkanki gąbczastej kręgosłupa
Autorzy:
Dzierżak, Róża
Powiązania:
https://bibliotekanauki.pl/articles/407656.pdf
Data publikacji:
2019
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
texture analysis
standardization
normalization
classification
analiza tekstury
standaryzacja
normalizacja
klasyfikacja
Opis:
The aim of this article was to compare the influence of the data pre-processing methods – normalization and standardization – on the results of the classification of spongy tissue images. Four hundred CT images of the spine (L1 vertebra) were used for the analysis. The images were obtained from fifty healthy patients and fifty patients with diagnosed with osteoporosis. The samples of tissue (50×50 pixels) were subjected to a texture analysis to obtain descriptors of features based on a histogram of grey levels, gradient, run length matrix, co-occurrence matrix, autoregressive model and wavelet transform. The obtained results were set in the importance ranking (from the most important to the least important), and the first fifty features were used for further experiments. These data were normalized and standardized and then classified using five different methods: naive Bayes classifier, support vector machine, multilayer perceptrons, random forest and classification via regression. The best results were obtained for standardized data and classified by using multilayer perceptrons. This algorithm allowed for obtaining high accuracy of classification at the level of 94.25%.
Celem niniejszego artykułu było porównanie wpływu metod wstępnego przetwarzania danych - normalizacji i standaryzacji - na wyniki klasyfikacji obrazów tkanki gąbczastej. Do analiz wykorzystano czterysta obrazów tomografii komputerowej kręgosłupa (kręg L1). Obrazy pochodziły od pięćdzisięciu zdrowych pacjentów oraz pięćdziesięciu pacjentów ze zdiagnozowaną osteoporozą. Uzyskane próbki tkanki (50×50 pikseli) poddano analizie tekstury w wyniku czego otrzymano deskryptory cech oparte na histogramie poziomów szarości, macierzy gradientu, macierzy RL, macierzy zdarzeń, modelu autoregresji i transformacie falkowej. Otrzymane wyniki ustawiono w rankingu ważności (od najistotniejszej do najmniej ważnej), a pięćdziesiąt pierwszych cech wykorzystano do dalszych eksperymentów. Dane zostały poddane normalizacji oraz standaryzacji, a następnie klasyfikowane przy użyciu pięciu różnych metod: naiwny klasyfikator Bayesa, maszyna wektorów wspierających, wielowarstwowe perceptrony, las losowy oraz klasyfikacji poprzez regresje. Najlepsze wyniki uzyskano dla danych na których przeprowadzono standaryzacje i poddano klasyfikacji za pomocą wielowarstwowych perceptronów. Taki algorytm postępowania pozwolił na uzyskanie wysokiej skuteczności klasyfikacji na poziomie 94,25%.
Źródło:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska; 2019, 9, 3; 66-69
2083-0157
2391-6761
Pojawia się w:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Unbalanced multiclass classification with adaptive synthetic multinomial naive Bayes approach
Niezrównoważona klasyfikacja wieloklasowa z adaptacyjnym syntetycznym wielomianowym naiwnym podejściem Bayesa
Autorzy:
Fauzi, Fatkhurokhman
Ismatullah
Nur, Indah Manfaati
Powiązania:
https://bibliotekanauki.pl/articles/27315441.pdf
Data publikacji:
2023
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
adaptive synthetic
classification
imbalance data
accuracy
adaptacyjna synteza
klasyfikacja
danedotyczące nierównowagi
dokładność
Opis:
Opinions related to rising fuel prices need to be seen and analysed. Public opinion is closely related to public policy in Indonesia in the future. Twitter is one of the media that people use to convey their opinions. This study uses sentiment analysis to look at this phenomenon. Sentiment is divided into three categories: positive, neutral, and negative. The methods used in this research are Adaptive Synthetic Multinomial Naive Bayes, Adaptive Synthetic k-nearest neighbours, and Adaptive Synthetic Random Forest. The Adaptive Synthetic method is used to handle unbalanced data. The data used in this study are public arguments per province in Indonesia. The results obtained in this study are negative sentiments that dominate all provinces in Indonesia. There is a relationship between negative sentiment and the level of education, internet use, and the human development index. Adaptive Synthetic Multinomial Naive Bayes performed better than other methods, with an accuracy of 0.882. The highest accuracy of the Adaptive Synthetic Multinomial Naive Bayes method is 0.990 in Papua Barat Province.
Należy przyjrzeć się i przeanalizować opinie związane z rosnącymi cenami paliw. Opinia publiczna jest ściśle związana z polityką publiczną Indonezji w przyszłości. Twitter jest jednym z mediów, których ludzie używają do przekazywania swoich opinii. Niniejsze badanie wykorzystuje analizę nastrojów, aby przyjrzeć się temu zjawisku. Opinia jest podzielona na trzy kategorie: pozytywną, neutralną i negatywną. Metody wykorzystane w tym badaniu to Adaptive Synthetic Multinomial Naive Bayes, Adaptive Synthetic k-nearest neighbours i Adaptive Synthetic Random Forest. Metoda Adaptive Synthetic służy do obsługi niezrównoważonych danych. Dane wykorzystane w tym badaniu to argumenty publiczne według prowincji w Indonezji. Wyniki uzyskane w tym badaniu to negatywne nastroje, które dominują we wszystkich prowincjach Indonezji. Istnieje związek między negatywnymi nastrojami a poziomem wykształcenia, korzystaniem z Internetu i wskaźnikiem rozwoju społecznego. Adaptive Synthetic Multinomial Naive Bayes działała lepiej niż inne metody, z dokładnością 0,882. Najwyższa dokładność metody Adaptive Synthetic Multinomial Naive Bayes wynosi 0,990 w prowincji Papua Barat.
Źródło:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska; 2023, 13, 3; 64--70
2083-0157
2391-6761
Pojawia się w:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Selected problems of evaluation and classification of historical buildings using rough sets
Wybrane problemy wartościowania i klasyfikacji budowli zabytkowych z wykorzystaniem zbiorów przybliżonych
Autorzy:
Czajkowski, K.
Powiązania:
https://bibliotekanauki.pl/articles/408205.pdf
Data publikacji:
2017
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
heritage preservation
valuation
classification
rough sets
ochrona dziedzictwa
wartościowanie
klasyfikacja
zbiory przybliżone
Opis:
The paper presents the problems associated with multicriteria evaluation of historic buildings. The capabilities of modeling the monuments in order to use the Rough Sets approach for their evaluation were presented. The problems of selection criteria for the evaluation and taking into account the structure of the object, as well as the problem of discretization and its impact on the generating of the rules were discussed.
W artykule zaprezentowano problemy związane z wielokryterialną oceną budowli zabytkowych. Przedstawione zostały możliwości modelowania obiektu zabytkowego w celu wykorzystania podejścia Zbiorów Przybliżonych dla ich wartościowania. Omówiono problemy doboru kryteriów oceny oraz uwzględnienia struktury obiektu, jak również problem dyskretyzacji i jego wpływ na generowanie reguł.
Źródło:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska; 2017, 7, 4; 5-10
2083-0157
2391-6761
Pojawia się w:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Actualization of the distributed knowledge base of ergatic system using the method of fuzzy classification
Aktualizacja rozproszonej bazy wiedzy systemu ergatycznego za pomocą metody klasyfikacji rozmytej
Autorzy:
Perederii, V.
Borchik, E.
Powiązania:
https://bibliotekanauki.pl/articles/407801.pdf
Data publikacji:
2014
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
knowledge base
fuzzy classification
membership functions
objects
baza wiedzy
klasyfikacja rozmyta
funkcje przynależności
obiekty
Opis:
In the article a method of actualization the distributed knowledge base of ergatic system using the method of fuzzy classification is proposed. As an example we consider the request choice formation of an alternative of decision-making from the knowledge base, according to the values of the input parameters. Genetic algorithm is used for finding optimal solutions. For automation of calculations MATLAB software package was used.
W pracy zaproponowano metodę aktualizacji rozproszonej bazy wiedzy systemu ergatycznego (system maszyna-człowiek) używając rozmytej klasyfikacji. Rozważono przykłady formułowania zapytań, wybór alternatywnych decyzji z bazy wiedzy, zgodnie z wartościami parametrów wejściowych. Celem znalezienia optymalnych rozwiązań zastosowano algorytmy genetyczne. Do automatyzacji obliczeń zastosowano pakiet MATLAB.
Źródło:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska; 2014, 3; 3-5
2083-0157
2391-6761
Pojawia się w:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Optimizing ultrasound image classification through transfer learning: fine-tuning strategies and classifier impact on pre-trained inner-layers
Optymalizacja klasyfikacji obrazów ultrasonograficznych techniką transfer learning: strategie dostrajania i wpływ klasyfikatora na wstępnie wytrenowane warstwy wewnętrzne
Autorzy:
Bal-Ghaoui, Mohamed
Alaoui, Hachem El Yousfi
Jilbab, Abdelilah
Bourouhou, Abdennaser
Powiązania:
https://bibliotekanauki.pl/articles/27315459.pdf
Data publikacji:
2023
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
CNN
transfer learning
fine-tuning
SVM
ultrasound images
cancer classification
dostrajanie
obraz ultrasonograficzny
klasyfikacja nowotworów
Opis:
Transfer Learning (TL) is a popular deep learning technique used in medical image analysis, especially when data is limited. It leverages pre-trained knowledge from State-Of-The-Art (SOTA) models and applies it to specific applications through Fine-Tuning (FT). However, fine-tuning large models can be time-consuming, and determining which layers to use can be challenging. This study explores different fine-tuning strategies for five SOTA models (VGG16, VGG19, ResNet50, ResNet101, and InceptionV3) pre-trained on ImageNet. It also investigates the impact of the classifier by usinga linear SVM for classification. The experiments are performed on four open-access ultrasound datasets related to breast cancer, thyroid nodules cancer, and salivary glands cancer. Results are evaluated using a five-fold stratified cross-validation technique, and metrics like accuracy, precision, and recall are computed. The findings show that fine-tuning 15% of the last layers in ResNet50 and InceptionV3 achieves good results. Using SVM for classification further improves overall performance by 6% for the two best-performing models. This research provides insights into fine-tuning strategiesandthe importance of the classifier in transfer learning for ultrasound image classification.
Transfer Learning (TL) to popularna technika głębokiego uczenia stosowana w analizie obrazów medycznych, zwłaszcza gdy ilość danych jestograniczona. Wykorzystuje ona wstępnie wyszkoloną wiedzę z modeli State-Of-The-Art (SOTA) i zastosowanie ich do konkretnych aplikacji poprzez dostrajanie (Fine-Tuning –FT). Jednak dostrajanie dużych modeli może być czasochłonne, a określenie, których warstw użyć, może stanowić wyzwanie.W niniejszym badaniu przeanalizowano różne strategie dostrajania dla pięciu modeli SOTA (VGG16, VGG19, ResNet50, ResNet101 i InceptionV3) wstępnie wytrenowanych na ImageNet. Zbadano również wpływ klasyfikatora przy użyciu liniowej SVM do klasyfikacji. Eksperymenty przeprowadzonona czterech ogólnodostępnych zbiorach danych ultrasonograficznych związanych z rakiem piersi, rakiem guzków tarczycy i rakiemgruczołów ślinowych. Wyniki są oceniane przy użyciu techniki pięciowarstwowej walidacji krzyżowej, a wskaźniki takie jak dokładność, precyzja i odzyskiwanie są obliczane. Wyniki pokazują, że dostrojenie 15% ostatnich warstw w ResNet50 i InceptionV3 osiąga dobre wyniki. Użycie SVM do klasyfikacjidodatkowo poprawia ogólną wydajność o 6% dla dwóch najlepszych modeli. Badania te zapewniają informacje na temat strategii dostrajania i znaczenia klasyfikatoraw uczeniu transferowym dla klasyfikacji obrazów ultrasonograficznych.
Źródło:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska; 2023, 13, 4; 27--33
2083-0157
2391-6761
Pojawia się w:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Classification of multidimensional polarization microscopy results in the technology of forensic intellectual monitoring of heart diseases
Klasyfikacja wyników wielowymiarowej mikroskopii polaryzacyjnej w technologii inteligentnego monitorowania chorób serca w medycynie sądowej
Autorzy:
Vanchulyak, Oleg
Golub, Serhii
Talakh, Mariia
Gantyuk, Vyacheslav
Powiązania:
https://bibliotekanauki.pl/articles/408669.pdf
Data publikacji:
2020
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
forensic medical monitoring
polarization microscopy
informative signal
classification
monitoring medycyny sądowej
mikroskopia polaryzacyjna
znak informacyjny
klasyfikacja
Opis:
The work combines methods of multidimensional polarization microscopy, statistical processing of data and inductive modeling with the purpose of constructing a methodology for creation of intelligent systems for multi-level forensic medical monitoring based on the example of the post-mortem diagnosis of coronary heart disease and acute coronary insufficiency. The task of classifying the results of the study of biological materials for obtaining a diagnosis was solved. To obtain informative features, a model of biological tissue of the myocardium was developed and the main diagnostic parameters were determined (statistical moments of 1–4 orders of coordinate distributions of the values of azimuths and the ellipticity of polarization and their autocorrelation functions, as well as wavelet coefficients of the corresponding distributions), which are dynamic due to its necrotic changes. The classification of these data was provided by constructing a deciding rule in the multi –raw algorithm of the GMDH. The effectiveness of the described methodology has been experimentally proved.
Praca łączy metody wielowymiarowej mikroskopii polaryzacyjnej, statystycznego przetwarzania danych i modelowania indukcyjnegow celu skonstruowania metodologii tworzenia inteligentnych systemów wielopoziomowego monitorowania w medycyniesądowej na przykładzie pośmiertnej diagnozy choroby wieńcowej i ostrej niewydolności wieńcowej. Wykonano zadanie sklasyfikowania wyników badań materiałów biologicznych w celu uzyskania diagnozy. Aby uzyskać cechy informacyjne, opracowano model tkanki biologicznej mięśnia sercowego i określono główne parametry diagnostyczne (momenty statystyczne 1–4 rzędów współrzędnych rozkładów wartości azymutów i eliptyczności polaryzacji oraz ich funkcji autokorelacji,a także jako współczynniki falkowe odpowiadających im rozkładów), które są dynamiczne z powodu jego zmian nekrotycznych. Klasyfikacja tych danych została zapewniona przez skonstruowanie decydującej reguły w algorytmie multi-raw GMDH. Skuteczność opisanej metodologii została eksperymentalnie udowodniona.
Źródło:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska; 2020, 10, 1; 82-86
2083-0157
2391-6761
Pojawia się w:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Metody analizy obrazu – analiza obrazu mammograficznego na podstawie cech wyznaczonych z tekstury
Image analysis methods - analysis of mammographic image based on textural features
Autorzy:
Lazarek, J.
Powiązania:
https://bibliotekanauki.pl/articles/408690.pdf
Data publikacji:
2013
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
mammografia
obrazowanie medyczne
analiza tekstury
klasyfikacja obrazów
mammography
medical diagnostic imaging
image texture analysis
image classification
Opis:
W artykule przedstawiono analizę możliwości zastosowania cech wyznaczanych z tekstury do klasyfikacji wykrytych, na obrazie mammograficznym, obszarów zainteresowania – jako obszarów niezmienionych lub zmienionych chorobowo. Cechy tekstury wyznaczono na podstawie histogramu, macierzy gradientu, macierzy długości pasm oraz macierzy zdarzeń. Klasyfikację przeprowadzono z wykorzystaniem klasyfikatora k-NN. W wyniku przeprowadzonych eksperymentów poprawnie rozpoznano wszystkie zmienione chorobowo próbki.
This paper presents an analysis of the possibility of using textural features for mammographic images classification. Textural features are calculated base on histogram, gradient matrix, run-length matrix, co-occurence matrix. Classification is based on k-NN classifier, the regions of interest can be classified as normal or abnormal. Results of some experiments are presented. All of abnormal regions were classified correctly.
Źródło:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska; 2013, 4; 10-13
2083-0157
2391-6761
Pojawia się w:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The influence of the principal component analysis of texture features on the classification quality of sponge tissue images
Wpływ analizy głównych składowych cech tekstury na jakość klasyfikacji obrazów tkanki gąbczastej
Autorzy:
Dzierżak, Róża
Powiązania:
https://bibliotekanauki.pl/articles/1841333.pdf
Data publikacji:
2020
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
principal component analysis
classification
texture analysis
medical imaging
analiza głównych składowych
klasyfikacja
analiza tekstury
obrazowanie medyczne
Opis:
The aim of this article was to determine the effect of principal component analysis on the results of classification of spongy tissue images. Four hundred computed tomography images of the spine (L1 vertebra) were used for the analyses. The images were from fifty healthy patients and fifty patients diagnosed with osteoporosis. The obtained tissue image samples with a size of 50x50 pixels were subjected to texture analysis. As a result, feature descriptors based on a grey level histogram, gradient matrix, RL matrix, event matrix, autoregressive model and wavelet transform were obtained. The results obtained were ranked in importance from the most important to the least important. The first fifty features from the ranking were used for further experiments. The data were subjected to the principal component analysis, which resulted in a set of six new features. Subsequently, both sets (50 and 6 traits) were classified using five different methods: naive Bayesian classifier, multilayer perceptrons, Hoeffding Tree, 1-Nearest Neighbour and Random Forest. The best results were obtained for data on which principal components analysis was performed and classified using 1-Nearest Neighbour. Such an algorithm of procedure allowed to obtain a high value of TPR and PPV parameters, equal to 97.5%. In the case of other classifiers, the use of principal component analysis worsened the results by an average of 2%.
Celem niniejszego artykułu było określenie wpływu analizy głównych składowych na wyniki klasyfikacji obrazów tkanki gąbczastej. Do analiz wykorzystano czterysta obrazów tomografii komputerowej kręgosłupa (kręg L1). Obrazy pochodziły od pięćdziesięciu zdrowych pacjentów oraz pięćdziesięciu pacjentów ze zdiagnozowaną osteoporozą. Uzyskane próbki obrazowe tkanki o wymiarze 50x50 pikseli poddano analizie tekstury. W wyniku tego otrzymano deskryptory cech oparte na histogramie poziomów szarości, macierzy gradientu, macierzy RL, macierzy zdarzeń, modelu autoregresji i transformacie falkowej. Otrzymane wyniki ustawiono w rankingu ważności od najistotniejszej do najmniej ważnej. Pięćdziesiąt pierwszych cech z rankingu wykorzystano do dalszych eksperymentów. Dane zostały poddane analizie głównych składowych wskutek czego uzyskano zbiór sześciu nowych cech. Następnie oba zbiory (50 i 6 cech) zostały poddane klasyfikacji przy użyciu pięciu różnych metod: naiwnego klasyfikatora Bayesa, wielowarstwowych perceptronów, Hoeffding Tree, 1-Nearest Neighbour and Random Forest. Najlepsze wyniki uzyskano dla danych, na których przeprowadzono analizę głównych składowych i poddano klasyfikacji za pomocą 1-Nearest Neighbour. Taki algorytm postępowania pozwolił na uzyskanie wysokiej wartości parametrów TPR oraz PPV, równych 97,5%. W przypadku pozostałych klasyfikatorów zastosowanie analizy głównych składowych pogorszyło wyniki średnio o 2%.
Źródło:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska; 2020, 10, 3; 13-16
2083-0157
2391-6761
Pojawia się w:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie metody Hellwiga do redukcji wymiaru przestrzeni cech obrazów USG tarczycy
The use of Hellwigs method for dimension reduction in feature space of thyroid ultrasound images
Autorzy:
Omiotek, Z.
Wójcik, W.
Powiązania:
https://bibliotekanauki.pl/articles/408563.pdf
Data publikacji:
2014
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
metoda Hellwiga
choroba Hashimoto
przetwarzanie obrazów
klasyfikacja tekstur
Hellwig’s method
Hashimoto’s disease
image processing
texture classification
Opis:
W artykule przedstawiono wyniki zastosowania metody Hellwiga do redukcji wymiaru przestrzeni cech obrazów USG tarczycy. Za pomocą tej metody, z wejściowego zbioru 283 cech otrzymano kombinację 3 cech z największą wartością wskaźnika pojemności informacyjnej Hellwiga. Zbiór ten posłużył do budowy i testowania klasyfikatorów. Wyniki klasyfikacji porównano z wynikami uzyskanymi dla 48 cech otrzymanych za pomocą metody korelacji. Okazało się, że dokładność klasyfikatorów zbudowanych ze zbioru liczącego 3 cechy nie jest gorsza od dokładności klasyfikatorów dla 48 cech, a w kilku przypadkach nawet ją przewyższa. Sugeruje to, że metoda Hellwiga może być wykorzystana jako wydajna metoda redukcji wymiaru przestrzeni cech dla potrzeb przyszłej klasyfikacji obrazów USG tarczycy.
This paper presents the use of Hellwig’s method for dimension reduction in feature space of thyroid ultrasound images. On the base of this method, the combination of three features with the greatest value of Hellwig’s index information capacity from the input set of 283 features was obtained. This set was used to build and test the classifiers. Classification results were compared with the results obtained for a set of 48 features obtained using correlation method. It turned out that the accuracy of classifiers built on the base of 3 features is not worse than the accuracy of classifiers built on the base of 48 features, and in some cases it is even higher. This suggests that the Hellwig’s method can be used as an effective method for dimension reduction in feature space for the future thyroid ultrasound images classification.
Źródło:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska; 2014, 3; 14-17
2083-0157
2391-6761
Pojawia się w:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Construction and verification of mathematical model of mass spectrometry data
Konstrukcja i weryfikacja matematycznego modelu danych widm masowych
Autorzy:
Plechawska-Wójcik, M.
Powiązania:
https://bibliotekanauki.pl/articles/408752.pdf
Data publikacji:
2013
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
Maldi-Tof mass spectrometry
Gaussians
Gaussian mixture models
SVM-RFE classification
spektrometria masowa Maldi-Tof
rozkłady Gaussa
mieszaniny rozkładów Gaussa
klasyfikacja SVM-RFE
Opis:
The article presents issues concerning construction, adjustment and implementation of mass spectrometry mathematical model based on Gaussians and Mixture Models and the mean spectrum. This task is essential to the analysis and it needs specification of many parameters of the model.
Artykuł przedstawia kwestie związane z konstrukcją, dopasowaniem i implementacją modelu matematycznego widm masowych opartego o rozkłady normalne i mieszaniny rozkładów oraz o widmo średnie. To zadanie jest kluczowe dla analizy, wymaga też określenia wielu parametrów modelu.
Źródło:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska; 2013, 1; 9-14
2083-0157
2391-6761
Pojawia się w:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of explainable artificial intelligence in software bug classification
Zastosowanie wyjaśnialnej sztucznej inteligencji w klasyfikacji usterek oprogramowania
Autorzy:
Chmielowski, Łukasz
Kucharzak, Michał
Burduk, Robert
Powiązania:
https://bibliotekanauki.pl/articles/27315369.pdf
Data publikacji:
2023
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
software bug assignment
software bug triaging
explainable artificial intelligence
text analysis
vulnerability
przypisywanie usterek oprogramowania
klasyfikacja usterek oprogramowania
wyjaśnialna sztuczna inteligencja
analiza tekstu
podatności
Opis:
Fault management is an expensive process and analyzing data manually requires a lot of resources. Modern software bug tracking systems may be armed with automated bug report assignment functionality that facilitates bug classification or bug assignment to proper development group.For supporting decision systems, it would be beneficial to introduce information related to explainability. The purpose of this work is to evaluate the useof explainable artificial intelligence (XAI) in processes related to software development and bug classification based on bug reports created by either software testers or software users. The research was conducted on two different datasets. The first one is related to classification of security vs non-securitybug reports. It comes from a telecommunication company which develops software and hardware solutions for mobile operators. The second dataset contains a list of software bugs taken from an opensource project. In this dataset the task is to classify issues with one of following labels crash, memory, performance, and security. Studies on XAI-related algorithms show that there are no major differences in the results of the algorithms used when comparing them with others. Therefore, not only the users can obtain results with possible explanations or experts can verify model or its part before introducing into production, but also it does not provide degradation of accuracy. Studies showed that it could be put into practice, but it has not been done so far.
Zarządzanie usterkami jest kosztownym procesem, a ręczna analiza danych wymaga znacznych zasobów. Nowoczesne systemy zarządzania usterkami w oprogramowaniu mogą być wyposażone w funkcję automatycznego przypisywania usterek, która ułatwia klasyfikację ustereklub przypisywanie usterek do właściwej grupy programistów. Dla wsparcia systemów decyzyjnych korzystne byłoby wprowadzenie informacji związanychz wytłumaczalnością. Celem tej pracy jest ocena możliwości wykorzystania wyjaśnialnej sztucznej inteligencji (XAI) w procesach związanych z tworzeniem oprogramowania i klasyfikacją usterek na podstawie raportów o usterkach tworzonych przez testerów oprogramowania lub użytkowników oprogramowania. Badania przeprowadzono na dwóch różnych zbiorach danych. Pierwszy z nich związany jest z klasyfikacją raportów o usterkach związanych z bezpieczeństwem i niezwiązanych z bezpieczeństwem. Dane te pochodzą od firmy telekomunikacyjnej, która opracowuje rozwiązania programowe i sprzętowe dla operatorów komórkowych. Drugi zestaw danych zawiera listę usterek oprogramowania pobranych z projektu opensource.W tym zestawie danych zadanie polega na sklasyfikowaniu problemów za pomocą jednej z następujących etykiet: awaria, pamięć, wydajnośći bezpieczeństwo. Badania przeprowadzone przy użyciu algorytmów związanych z XAI pokazują, że nie ma większych różnic w wynikach algorytmów stosowanych przy porównywaniu ich z innymi. Dzięki temu nie tylko użytkownicy mogą uzyskać wyniki z ewentualnymi wyjaśnieniami lub eksperci mogą zweryfikować model lub jego część przed wprowadzeniem do produkcji, ale także nie zapewnia to degradacji dokładności. Badania wykazały, że możnato zastosować w praktyce, ale do tej pory tego nie zrobiono.
Źródło:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska; 2023, 13, 1; 14--17
2083-0157
2391-6761
Pojawia się w:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies