Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Fabian, P." wg kryterium: Autor


Wyświetlanie 1-1 z 1
Tytuł:
Application of sparse linear discriminant analysis for prediction of protein-protein interactions
Autorzy:
Stąpor, K.
Fabian, P.
Powiązania:
https://bibliotekanauki.pl/articles/95137.pdf
Data publikacji:
2016
Wydawca:
Szkoła Główna Gospodarstwa Wiejskiego w Warszawie. Wydawnictwo Szkoły Głównej Gospodarstwa Wiejskiego w Warszawie
Tematy:
sparse discriminant analysis
feature selection
protein-protein interaction
Opis:
To understand the complex cellular mechanisms involved in a biological system, it is necessary to study protein-protein interactions (PPIs) at the molecular level, in which prediction of PPIs plays a significant role. In this paper we propose a new classification approach based on the sparse discriminant analysis [10] to predict obligate (permanent) and non-obligate (transient) protein-protein interactions. The sparse discriminant analysis [10] circumvents the limitations of the classical discriminant analysis [4, 9] in the high dimensional low sample size settings by incorporating inherently the feature selection into the optimization procedure. To characterize properties of protein interaction, we proposed to use the binding free energies. The performance of our proposed classifier is 75% ± 5%.
Źródło:
Information Systems in Management; 2016, 5, 1; 109-118
2084-5537
2544-1728
Pojawia się w:
Information Systems in Management
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies