Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Niedbała, J." wg kryterium: Autor


Wyświetlanie 1-3 z 3
Tytuł:
Prognozowanie zawartości cukru w korzeniach buraka cukrowego z wykorzystaniem technik regresyjnych i neuronowych
Prognosis of the content of sugar in the roots of sugar-beet with utilization of the regression and neural techniques
Autorzy:
Niedbała, G.
Przybył, J.
Sęk, T.
Powiązania:
https://bibliotekanauki.pl/articles/288994.pdf
Data publikacji:
2007
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
burak cukrowy
prognozowanie
plon cukru
sztuczna sieć neuronowa
model regresyjny
artificial neural networks
prediction
sugar beet
Opis:
Celem pracy było zbudowanie modelu prognozującego zawartość cukru w korzeniach buraka cukrowego. Prognozę można przeprowadzić przy pomocy klasycznych metod regresyjnych oraz z wykorzystaniem nowoczesnej techniki modelowania neuronowego. W pracy dokonano porównania obu tych metod dla budowy krótkoterminowych modeli prognoz zawartości cukru w korzeniach buraka cukrowego, opartych na danych empirycznych z trzyletnich badań.
Prognosis of the content of sugar in the roots of sugar-beet is an important element of the organization of the production in the farm. The high content of the sugar gives measurable financial advantages for the grower and delivers to the sugar factories the material from which one gets white sugar of high quality. The aim of the research was to build a prognosis model of the content of sugar in the sugar-beet roots. One can conduct the realization of the prognosis by means the classic regression method, and the modern techniques of neural modeling as well. During research comparisons of both methods were performed when it comes to the building of short-term models of prognoses the content of sugar in the roots of sugar-beet based on empirical data's of three-years investigations.
Źródło:
Inżynieria Rolnicza; 2007, R. 11, nr 2 (90), 2 (90); 225-234
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Predykcja plonów buraka cukrowego przy wykorzystaniu technik neuronowych
Prediction of sugar beet yields with the use of neural network techniques
Autorzy:
Niedbała, G.
Przybył, J.
Sęk, T.
Powiązania:
https://bibliotekanauki.pl/articles/288671.pdf
Data publikacji:
2005
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
burak cukrowy
predykcja plonu
sztuczna sieć neuronowa
sugar beet
yield prediction
artificial neural network
Opis:
Uzyskanie plonu korzeni buraka cukrowego o wysokich parametrach jakościowych i ilościowych wymaga starannego zaplanowania całego procesu produkcji. Do uzyskania możliwie najlepszych efektów produkcyjnych stosuje się modele plonu. Stosowane dotychczas modele charakteryzują się niewystarczającą dokładnością prognozy, są skomplikowane i uciążliwe w praktycznym zastosowaniu. Dlatego postanowiono utworzyć model plonu buraka cukrowego z wykorzystaniem Sztucznych Sieci Neuronowych (SSN). Symulatory tych sieci pozwalają na wytworzenie modelu prognostycznego i jego weryfikację bez dużych nakładów finansowych. Niezbędne są tu jednak badania polowe, dzięki którym zostanie utworzona baza danych empirycznych.
To obtain the sugar beet roots yield of both, high qualitative and quantitative parameters, the correct planning of complete production is required. During planning of this process, the models for obtaining best production effects are being used. However, the models already used are characterized by insufficient exactitude of prognosis, are complicated and inconvenient in practical implementation. This inconvenience was the reason for creation of a new sugar beet yielding model with the use of Artificial Neural Networks (ANN). Simulators of these networks enabled the prognostic model creation and its verification without large financial inputs. However, the field experiments are indispensable for creation on their ground the empirical data base.
Źródło:
Inżynieria Rolnicza; 2005, R. 9, nr 8, 8; 285-291
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analiza założeń dla modelowania plonu buraka cukrowego z wykorzystaniem sztucznych sieci neuronowych
The analysis of assumptions for modeling sugar beet crop with utilization of artificial neural networks
Autorzy:
Niedbała, G.
Przybył, J.
Boniecki, P.
Sęk, T.
Powiązania:
https://bibliotekanauki.pl/articles/287451.pdf
Data publikacji:
2005
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
burak cukrowy
predykcja plonu
sztuczne sieci neuronowe
sugar beet
crop prediction
artificial neural network
Opis:
Do planowania plonu roślin, w tym plonu buraka cukrowego, wykorzystuje się modele prognostyczne. Istniejące modele mają zastosowanie zarówno w skali mikro - dla gospodarstwa, jaki i makro - dla regionu, czy kraju. Te modele, najczęściej zaimplementowane w programach komputerowych, ze względu na dużą liczbę danych wejściowych, są raczej niedostępne dla plantatora buraka cukrowego i rolniczych służb doradczych. Dlatego w pracy podjęto próbę opracowania własnego modelu plonu buraka cukrowego, opartego na metodach sztucznej inteligencji, przy wykorzystaniu możliwie niewielkiej liczby danych wejściowych. Założono, że dane wejściowe do modelu powinny stanowić podstawowe czynniki charakteryzujące siedlisko, użyte środki produkcji i przebieg warunków pogodowych.
In planning crops, including sugar beet crop, prognostic models are used. Existing models are utilized in micro scale - for the farm, as well as in macro scale - for region or country. These models, generally implemented in computer programmes, are rather unavailable for sugar beet planters and agricultural advisory services because of the huge amount of input data. That is why in this paper an attempt was made to create own model of sugar beet crop based on artificial intelligence methodology and the smallest possible amount of input data. It was assumed that input data for models should be the basic factors characterizing habitat, means of production used and weather conditions course.
Źródło:
Inżynieria Rolnicza; 2005, R. 9, nr 2, 2; 123-130
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies