Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "sieci probabilistyczne" wg kryterium: Wszystkie pola


Wyświetlanie 1-3 z 3
Tytuł:
Dynamiczne sieci probabilistyczne jako system reprezentacji wiedzy
Dynamic Bayesian Networks as knowledge representation system
Autorzy:
Kusz, A.
Marciniak, A. W.
Powiązania:
https://bibliotekanauki.pl/articles/287774.pdf
Data publikacji:
2006
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
system reprezentacji wiedzy
sieci probabilistyczne
bayesowskie sieci dynamiczne
modele niezawodnościowe
knowledge representation system
probabilistic networks
dynamic Bayesian networks
reliability models
Opis:
W pracy przedstawiono podstawowe założenia metodyczne związane z budową formalnych systemów reprezentacji wiedzy. Omówiono sieci probabilistyczne, które są szczególnie przydatnym systemem reprezentacji wiedzy w przypadku, gdy trzeba w sposób jawny zakodować czynnik niepewności i rozumowania w kategoriach niedeterministycznych związków przyczynowo-skutkowych. Sprecyzowano zasady budowy modelu oraz omówiono metody wnioskowania specyficzne dla sieci bayesowskich.
The paper presents Bayesian Networks (BN) technology in the context of methodological requirements for building knowledge representation systems in the domain of agricultural engineering. BN, by their nature, are especially useful for modeling uncertain domains like agricultural production and food chains management.
Źródło:
Inżynieria Rolnicza; 2006, R. 10, nr 12(87), 12(87); 285-294
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
System wspomagania procesów decyzyjnych w eksploatacji maszyn
Decision support system for machinery maintenance
Autorzy:
Bartnik, G.
Kusz, A.
Powiązania:
https://bibliotekanauki.pl/articles/287070.pdf
Data publikacji:
2005
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
eksploatacja
reprezentacja wiedzy
sieci probabilistyczne
maintenance decisions support system
probabilistic networks
Opis:
W artykule przedstawiono zastosowanie sieci probabilistycznych do reprezentacji wiedzy diagnostycznej i modelowania scenariuszy rozwoju sytuacji problemowych na przykładzie eksploatacji pasteryzatora płytowego do mleka.
The paper presents an application of probabilistic network for diagnostic knowleedge representation and modeling the course of problem situation evolution on the examle of milk plate pasterisatour.
Źródło:
Inżynieria Rolnicza; 2005, R. 9, nr 6, 6; 23-32
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Probabilistyczne modele zjawisk przestrzennych w rolnictwie
Probabilistic models of spatial phenomena in agriculture
Autorzy:
Marciniak, A.
Powiązania:
https://bibliotekanauki.pl/articles/291394.pdf
Data publikacji:
2009
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
system informacji przestrzennej
GIS
probabilistyczna predykcja
probabilistyczna interpolacja
obiekt przestrzenny
sieci bayesowskie
probabilistic prediction
approximation prediction
spatial objects
Bayesian networks
Opis:
Niepewność, zarówno stochastyczna jak i epistemiczna, obecna w modelach zjawisk czaso-przestrzennych w rolnictwie uzasadnia zastosowanie metod probabilistycznych predykcji, wyjaśnianiu i aproksymacji obiektów przestrzennych. Z metodologicznego, obliczeniowego i inferencyjnego punktu widzenia odpowiednią technologią modelowania są tu sieci bayesowskie traktowane jako systemy reprezentacji wiedzy. W takim ujęciu modelowanie sprowadza się do translacji wiedzy z języka naturalnego na formalny i wykonywalny język sieci bayerowskich. Logiczną spójność i efektywność takiego rozumienia procesu modelowania pokazano na przykładzie budowy modelu aproksymacji i predykcji plonu pszenicy.
Uncertainty, both stochastic and epistemic, occurring in models of space-time phenomena in agriculture justifies application of probabilistic methods in predication, clarifying and approximation of spatial objects. From methodological, computational and inferential point of view, in this case proper modelling technologies include Bayesian networks treated as knowledge representation systems. From this perspective modelling comes down to translation of knowledge from natural language to formal and executable language of Bayesian networks. Logical coherence and effectiveness of this definition of modelling process is shown on the example of building a model of wheat crop approximation and prediction.
Źródło:
Inżynieria Rolnicza; 2009, R. 13, nr 5, 5; 193-199
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies