Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "energy activation" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Activation Energy of Rape Residue
Energia aktywacji odpadów rzepaku
Autorzy:
Znamenackova, I.
Hredzak, S.
Cablik, V.
Cablikova, L.
Hlavata, M.
Dolinska, S.
Lovas, M.
Powiązania:
https://bibliotekanauki.pl/articles/317983.pdf
Data publikacji:
2015
Wydawca:
Polskie Towarzystwo Przeróbki Kopalin
Tematy:
energia aktywacji
promieniowanie mikrofalowe
odpady rzepaku
activation energy
microwave radiation
rape residue
Opis:
Thermal analysis describes the changes of physical and chemical properties of materials depending on increasing temperature. Thermogravimetric analysis of rape residue sample has been carried in inert atmosphere. The samples were heated over a range of temperatures that includes the entire range of pyrolysis with three different heating rates of 5, 10 and 15°C min-1. Thermogravimetric (TG) curves were obtained from experimental data. The results obtained from thermal decomposition process indicate that there are main stages such as dehydration, active and passive pyrolysis. The first region from 50°C is related to the extraction of moisture and adsorbed water in samples. The main pyrolysis process proceeds in a range from approximately 250 to 450°C. The activation energy values as a function of the extent of conversion for the pyrolysis process of rape residue have been calculated by means of the Flynn– Wall–Ozawa method. The activation energy for the pyrolysis of rape residue was 99–189 kJ.mol-1 in the conversion range of 0.2–0.8. The average activation energy calculated by this method was 142 kJ.mol-1.
Analiza termiczna wykazała zmiany właściwości fizycznych oraz chemicznych materiałów w zależności od wzrostu temperatury. Analizę termograwimetryczną próbek odpadów rzepaku przeprowadzono w atmosferze gazów obojętnych. Próbki były podgrzane w różnym zakresie temperatur, który zawierał cały zakres pirolizy z trzema różnymi prędkościami ogrzewania wynoszącymi 5, 10 oraz 15°C min-1. Krzywe termograwimetru (TG) otrzymano z danych eksperymentalnych. Wyniki uzyskane z termicznej dekompozycji wskazują na istnienie głównych faz takich jak dehydratacja, aktywna i pasywna piroliza. Pierwszy proces zachodzi w okolicy 50°C, występuje wtedy parowanie wilgoci i wody z próbek. Główny proces pirolizy zachodzi w zakresie od ok. 250°C do 450°C. Wartości energii aktywacji jako przedłużenie właściwości konwersji procesu pirolizy resztek rzepy zostały obliczone metodą Flynn-Wall-Ozawa. Energia aktywacji dla pirolizy odpadów rzepaku wyniosła 99–189 kJ.mol-1 w zakresie konwersji od 0,2–0,8. Średnia energia aktywacji obliczona tą metodą wyniosła 142 kJ.mol-1.
Źródło:
Inżynieria Mineralna; 2015, R. 16, nr 2, 2; 155-160
1640-4920
Pojawia się w:
Inżynieria Mineralna
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Technological Reliability of Recycling Anthropogenic Minerals from the Landfills in the Move Towards Green Energy
Niezawodność technologiczna odzysku minerałów antropogenicznych ze składowisk w zielonym zwrocie energetycznym
Autorzy:
Szymanek, Arkadiusz
Knaś, Krzysztof
Powiązania:
https://bibliotekanauki.pl/articles/2172068.pdf
Data publikacji:
2022
Wydawca:
Polskie Towarzystwo Przeróbki Kopalin
Tematy:
fly ash
electromechanical activation
concrete
move towards green energy
popiół lotny
aktywacja elektromechaniczna
beton
zielony zwrot energetyczny
Opis:
The subject of this paper is electromagnetic activation technology for fly ash, which allows for the transformation of the troublesome energy waste into a valuable market product. The move towards green energy, apart from decarbonisation and reduction of carbon dioxide emissions, is facing additional challenges, i.e. disposal and use of accumulated solid waste, which, due to its specific composition, may soon be considered hazardous. Therefore, it is important to recycle them for sale as a market product. Such opportunities are offered by the technology referred to above, which allows for the use of the above-mentioned anthropogenic minerals in concrete products. As demonstrated in the tests presented in the article, the use of activated fly ash does not deteriorate the resilience of concretes, bringing benefits in the form of avoiding emissions of CO2 which is the result of limiting the use of cement and reducing emissions and transport costs. The liquidation of landfills also fits perfectly with the key points of the circular economy, at the same time implementing the philosophy of priority for secondary ones. High-efficiency and quick operation of furnace waste landfills has multi-threaded ecological effects, which include emission reductions, protection of natural resources and, finally, restoration and reclamation of devastated areas. The second group includes economic benefits, which will also be the result of many overlapping market effects.
Przedmiotem artykułu jest technologia aktywacji elektromagnetycznej dla popiołów lotnych, pozwalająca kłopotliwe odpady energetyczne przekształcić w wartościowy produkt rynkowy. Przed zielonym zwrotem energetycznym poza samą dekarbonizacją i redukcją emisji ditlenku węgla stoją wyzwania dodatkowe, utylizacji i wykorzystania nagromadzonych odpadów stałych. które ze względu na swój specyficzny skład w niedługim czasie mogą być uznane za niebezpieczne. Dlatego też ważne jest aby zawracać je do gospodarki w postaci produktu rynkowego. Takie szanse daje opisana technologia, która pozwala na stosowanie z powodzeniem ww. minerałów antropogenicznych w wyrobach betonowych. Jak wykazały przedstawione w artkule badania, zastosowanie aktywowanych popiołów lotnych nie pogarsza właściwości wytrzymałościowych betonów, przynosząc korzyści w postaci unikniętej emisji CO2 wynikającej z ograniczenia stosowania cementu oraz redukcji emisji i kosztów transportowych. Likwidacja składowisk wpisuje się również doskonale w założenia gospodarki obiegu zamkniętego realizując jednocześnie filozofię pierwszeństwa dla wtórnych. Wysokosprawna i szybka eksploatacja składowisk odpadów paleniskowych przynosi wielowątkowe skutki ekologiczne, na które składają się redukcje emisji, ochrona zasobów naturalnych i wreszcie przywracanie i rekultywacja terenów zdewastowanych. Drugą grupa, są korzyści ekonomiczne, które również będą wypadkową nakładających się na siebie wielu efektów rynkowych.
Źródło:
Inżynieria Mineralna; 2022, 2; 167--173
1640-4920
Pojawia się w:
Inżynieria Mineralna
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies