Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "pca" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Application of geomatic tools for the diachronic monitoring of landscape metrics in the northeastern algerian highlands, case of the city of Setif
Autorzy:
Kraria, Hocine
Zighmi, Karim
Chibani, Abdelmouhcene
Powiązania:
https://bibliotekanauki.pl/articles/2201671.pdf
Data publikacji:
2022
Wydawca:
Uniwersytet Rolniczy im. Hugona Kołłątaja w Krakowie
Tematy:
LAUP
GIS
RS
PCA
Sentinel 2A
Landsat
Opis:
Geomatic tools could be used efficiently for urban development planning. The problem of the study lies in the extensive land use of terrains that are now suitable for heavy construction which slows down the development of new facilities. Furthermore, the authorities are forced to plan future settlements around Setif, at a distance of 8 to 12 kilometers from the city limits, threatening the long-term viability of construction and the ring of farmland that connects them to the core city. This must be done during the planning stage based on a diachronic analysis of all the natural and physical factors/parameters. The main objective of this research is to explore the application of landscape metrics to the analysis and monitoring of urban growth in the city of Setif, north-east of Algeria. For this purpose, our research paper uses Geographic Information System (GIS) and Remote Sensing (RS) techniques based on Principal Component Analysis (PCA) and the Angle Mapper Algorithm (SAM) target method for the analysis of urban land planning and sustainable urban planning of Setif. In the result of these analyses we propose suitability/buildability maps with more suitable construction sites. The research method is based on a 17-year time series dataset compiled from the Sentinel 2A and Landsat imagery between 2004 and 2021. Additionally, we used a cadastral Vs geotechnical overlay to estimate soil capacity. This work proves again that the integration of RS and GIS techniques allows for scientific identification of the lands suitable for urban development (LAUP).
Źródło:
Geomatics, Landmanagement and Landscape; 2022, 4; 67--79
2300-1496
Pojawia się w:
Geomatics, Landmanagement and Landscape
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A combined field and automatic approach for lithological discrimination in semi-arid regions, the case of geological maps of bir later region and its vicinity, Nementcha mounts, Algeria
Autorzy:
Chibani, Abdelmouhcene
Hadji, Riheb
Younes, Hamed
Powiązania:
https://bibliotekanauki.pl/articles/2201670.pdf
Data publikacji:
2022
Wydawca:
Uniwersytet Rolniczy im. Hugona Kołłątaja w Krakowie
Tematy:
Nememcha Mountains
PCA
MNF
directional filter
unsupervised classification
Góry Nememcha
filtr kierunkowy
klasyfikacja nienadzorowana
Opis:
The Sahara’s Nememcha mountains chain suffers from a significant lack of large-scale geological information. In the Bir Later region with complex morpho-structural settings and arid climate conditions; geological maps have not been yet completed by competent authorities. However, this region harbours Algeria’s largest phosphate mine; with its reserves estimated at more than one billion tons of ore grading 20% phosphorus pentoxide. Geomatic-based techniques of Multisource Remote Sensing data allow the classification and identification of the lithologic features. The adopted method quarries the spectral signal, the alteration processes, and the thickness of the rocky banks. For this task, we apply Principal Component Analysis (PCA), Minimum Noise Fraction (MNF), directional filters, and unsupervised classification (K-Means data) techniques to calibrate and correct Landsat 8 OLI and Sentinel-2A multispectral images. A petrographic study with field and laboratory work was carried out in order to confirm the machine description of the different facies. The results showed that the proposed lithology classification scheme can achieve accurate classification of all lithologic types, in the Cenozoic, Mesozoic, and Holocene deposits of the study area. The lithological map obtained from the GIS-RS-Processing is highly correlated with our field survey. Therefore, multispectral image data (Landsat 8 OLI and Sentinel-2A) coupled with an advanced image enhancement technique and field surveys are recommended as a rapid and cost-effective tool for lithologic discrimination and mapping. The experimental results fully demonstrated the advantages of the reliance on laboratory tests in the sensed lithology validation in an arid area.
Źródło:
Geomatics, Landmanagement and Landscape; 2022, 4; 7--26
2300-1496
Pojawia się w:
Geomatics, Landmanagement and Landscape
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Land clayey deposits compressibility investigation using principal component analysis and multiple regression tools
Autorzy:
Berrah, Yacine
Chegrouche, Aymen
Brahmi, Serhane
Boumezbeur, Abderrahmane
Powiązania:
https://bibliotekanauki.pl/articles/2201674.pdf
Data publikacji:
2022
Wydawca:
Uniwersytet Rolniczy im. Hugona Kołłątaja w Krakowie
Tematy:
compressibility index
geotechnical parameters
principal component analysis
PCA
multiple regression models
indeks ściśliwości
parametry geotechniczne
analiza głównych składowych
regresja wielokrotna
Opis:
The settlement and compressibility magnitude of the major clayey and marly sediments in Tebessa area (N-E of Algeria) depends on several geotechnical parameters such as compression Cc and recompression Cs indices. The aim of this study was to investigate the parameters related to soil compressibility through tools of statistical analysis, which save time in comparison to multiply repeated laboratory tests. The study also adopted the principal component analysis (PCA) method to eliminate a number of uncorrelated variables that have no influence on the compressibility magnitude, or their impact is insignificant. The highest mean correlation coefficients were obtained for different contributing parameters. Multiple regression analysis has been performed to obtain the best fit model of the output Cc parameter taking into account the best correlation by adding parameters as regressors to reach the highest coefficient of regression R2 . The final obtained model of the present case study gives the best fit model with R2 of 0.92 which is a better value compared to different published models in the literature (R2 of 0.7 as maximum). The chosen input parameters using PCA combined with multiple regression analysis allow identifying the most important input parameters that noticeably affect the soil compression index, and provide with the best model for estimating the Cc index.
Źródło:
Geomatics, Landmanagement and Landscape; 2022, 4; 95--107
2300-1496
Pojawia się w:
Geomatics, Landmanagement and Landscape
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies