Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Kopacz, A." wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
The leaching of mineral nitrogen forms from light soil fertilized with compost and sewage sludge
Autorzy:
Rajmund, A.
Czyżyk, F.
Paszkiewicz-Jasińska, A.
Kopacz, M.
Powiązania:
https://bibliotekanauki.pl/articles/184255.pdf
Data publikacji:
2018
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
mineral nitrogen
light soil
sewage sludge
compost
Opis:
The research was carried out in the years 2003-2013 in lysimeters filled with loamy sand. The leachate was tested in three variants: Z - no fertilization, S - 20 g-m-2 of N delivered annually in sewage sludge and C - 20 g-m-2 of N in the form of compost. The lysimeters were planted with Miscanthus giganteus, which is an energy plant with a high demand for water and nutrients. The amount of leaching of mineral nitrogen forms was determined on the basis of measured volumes of leachates from the soil and volumes of ammonium nitrogen (N-NH4) and nitrate nitrogen (N-NO3) contained in them. The research results showed a significant increase in the average content of mineral nitrogen forms in the effluents from the fertilized soil (S - 6.8 mg-dm-3 of N-NO3 and 0.3 mg-dm-3 of N-NH4, C - 7.8 mg-dm-3 of N-NO3 and 0.4 mg-dm-3 of N-NH4), compared to their concentrations in the leachates from non-fertilized soil (Z - 2.1 mg-dm-3 of N-NO3 and 0.2 mg-dm-3 of N-NH4). The content of mineral forms of nitrogen, in particular N-NO3, were similar in both fertilization variants. The lowest concentrations of mineral nitrogen in the leachates occurred in the third and fourth year after planting Miscanthus giganteus, when it entered the period of the highest yield. In the fifth year, due to a cold, snowless winter, there was a weakened growth of plants, which resulted in an increase in the concentration of mineral nitrogen in the leachates from the fertilized soil. It follows that in addition to the intensity of precipitation, the collection of this component by plants primarily influences nitrogen leaching from the soil. The general amount of mineral nitrogen leached from the soil was not large and amounted Z - 2.5 kg-m-2, S - 6.7 kg-m-2, C - 6.4 kg-m-2. This testifies to the intense collection of this form of nitrogen by Miscanthus giganteus.
Źródło:
Geology, Geophysics and Environment; 2018, 44, 3; 319-327
2299-8004
2353-0790
Pojawia się w:
Geology, Geophysics and Environment
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The influence of structural and functional changes on N-P-K input of agricultural origin and surface water quality in the upper Dunajec River basin in the years 1980-2010
Autorzy:
Kopacz, M.
Kowalczyk, A.
Smoroń, S.
Rychtarczyk, M.
Powiązania:
https://bibliotekanauki.pl/articles/184480.pdf
Data publikacji:
2018
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
structural changes
land use changes
agricultural production
N-P-K inputs (hereafter N-P-K load)
surface water quality
Opis:
The aim of the study was the prediction of N-P-K inputs (hereafter referred to as NPK load) from agricultural sources. The study aimed to determine relations between the structural changes and the N-P-K load (nitrogen-phosphorus-potassium) fertilizer components in the upper Dunajec River basin (the Carpathian region in Poland). Analysis included the level and nature of agricultural production, the land use structure and non-agricultural factors. Multiple regression analysis was used for the development of the model. Relationships were determined in the form of regression models in the system of N-P-K load-structural parameters-land use-surface water quality. The quality of surface water was assessed in a range of concentrations of N-NO3-, N-NH4+, PO43-, Cl-, and compared to the N-P-K load that was brought to the basin from agricultural sources. Significant structural and spatial changes took place in the upper Dunajec River basin that affected many social, economic and environmental factors. Agricultural production was reduced, resulting in a decrease of area of agricultural land between the year 1980 and 2010. The most important factors influencing the changes in biogenic load of an agricultural origin were: stocking density and mineral fertilization. Both of these parameters determined the amount of N-P-K load in approx. 80-90% (not counting the use of N-P-K components by crops). Surface water quality has generally improved, only higher concentrations of chlorides were recorded in small urbanized river basins. Therefore, the chemical composition of water plays the role of a simplified indicator of structural changes. Mathematical formulas proved changes in N-P-K load depending on variations of individual influencing factors. The development of the usable space of the investigated river basin must take into account agricultural and non-agricultural factors, as well as the proportions and relationships between them. Only then might the sustainable and multifunctional development of these areas be provided.
Źródło:
Geology, Geophysics and Environment; 2018, 44, 3; 295-308
2299-8004
2353-0790
Pojawia się w:
Geology, Geophysics and Environment
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies