Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Plasienka, D." wg kryterium: Autor


Wyświetlanie 1-4 z 4
Tytuł:
Jurassic syn-rift and Cretaceous syn-orogenic, coarse-grained deposits related to opening and closure of the Vahic (South Penninic) Ocean in the Western Carpathians – an overview
Autorzy:
Plasienka, D.
Powiązania:
https://bibliotekanauki.pl/articles/2060512.pdf
Data publikacji:
2012
Wydawca:
Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy
Tematy:
Western Carpathians
Mesozoic
rifting
thrusting
deep-marine clastics
mass flow deposits
Opis:
Although no undoubted oceanic crustal rock complexes of Penninic affinity participate in the present surface structure of the Western Carpathians, indirect lines of evidence suggest prolongation of the South Penninic-Vahic oceanic tract into the ancient Carpathians. The sedimentary record of both the syn-rift and syn-orogenic clastic deposits reveal their origin between the outer Tatric (Austroalpine) and the inner Oravic (Middle Penninic) margins. The rifting regime is exemplified by the normal fault-related scarp breccias of the Jurassic Borinka Unit in the Male Karpaty Mts., which are characterized by local, gradually denuded source areas. Two other regions provide examples of a contractional regime, both related to shortening and closure of the Vahic oceanic domain. The Belice Unit in the Povazsky Inovec Mts. includes Upper Jurassic-Lower Cretaceous eupelagic, mostly siliceous deposits and a thickening-upwards Senonian sequence of turbiditic sandstones, conglomerates and chaotic breccias. It is inferred that this succession represents the sedimentary cover of oceanic crust approaching a trench, its incorporation in the accretionary complex and finally underthrusting below the outer Tatric margin. In the Oravic units of the Pieniny Klippen Belt, deep-marine conglomerate/breccia bodies with olistoliths indicate collision-related thrust stacking that started from the Maastrichtian (Gregorianka Breccia of the Sub-Pieniny Unit) and terminated with the Lower Eocene Milpos Breccia in the Saris Unit. In addition, a tentative recycling scheme of “exotic” clastic material from mid-Cretaceous conglomerates of the Klape Unit to various Klippen Belt units is outlined. This material is considered to be unrelated to the Vahic oceanic realm and its closure, and likely represents erosional products of more distant orogenic zones.
Źródło:
Geological Quarterly; 2012, 56, 4; 601--628
1641-7291
Pojawia się w:
Geological Quarterly
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Stepwise clockwise rotation of the Cenozoic stress field in the Western Carpathians as revealed by kinematic analysis of minor faults in the Manín Unit (western Slovakia)
Autorzy:
Šimonová, V.
Plašienka, D.
Powiązania:
https://bibliotekanauki.pl/articles/2060350.pdf
Data publikacji:
2017
Wydawca:
Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy
Tematy:
faults
palaeostress reconstruction
tectonic regime
Manín Unit
Western Carpathians
Opis:
This study aims at quantitative kinematic analysis of fault-slip data and palaeostress reconstruction of polyphase brittle structures developed in the Manín Unit cropping out in the Middle Váh River Valley of western Slovakia. The Manín Unit neighbours the Pieniny Klippen Belt that follows the boundary between the Paleogene accretionary wedge of the Outer Carpathians and the Cretaceous nappe system of the Central Western Carpathians. After the nappe emplacement during mid-Cretaceous times, the Manín Unit was incorporated into the Pieniny Klippen Belt and attained its complex tectonic style. Based on kinematic analysis of meso-scale faults with slickensides, six (D1–D6) brittle deformation stages have been discerned. The relative succession of individual palaeostress states was derived from field structural relationships; their stratigraphic age was estimated primarily by comparison with other published data. Palaeostress analysis in the Manín Unit revealed the existence of six different palaeostress fields acting from the Middle Eocene to the Quaternary. The first three generations of meso-scale brittle structures were formed under a transpressional tectonic regime during the pre-Late Eocene–Early Miocene D1–D3 deformation. Generally, the maximum horizontal stress axis rotated clockwise from a W–E to an approximately N–S direction. Thereafter, a transtensional tectonic regime was characterized by a WNW–ESE to NNW–SSE oriented minimum horizontal stress axis during Middle and Late Miocene D4–D5 deformation. A general extensional tectonic regime influenced the structural evolution of the area in the Pliocene to Quaternary, when a gradual reorientation of the palaeostress field resulted in the development of variable, often reactivated, fault structures.
Źródło:
Geological Quarterly; 2017, 61, 1; 251--264
1641-7291
Pojawia się w:
Geological Quarterly
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Petrology and palaeotectonic setting of Cretaceous alkaline basaltic volcanismin the Pieniny Klippen Belt (Western Carpathians, Slovakia)
Autorzy:
Spišiak, J.
Plašienka, D.
Bucová, J.
Mikuš, T.
Powiązania:
https://bibliotekanauki.pl/articles/2059013.pdf
Data publikacji:
2011
Wydawca:
Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy
Tematy:
Western Carpathians
Pieniny Klippen Belt
Cretaceous
melanephelinite
petrology
geochemistry
Opis:
Occurrences of mafic alkaline volcanics are scattered all around Europe, being mostly related to anorogenic, extensional tectonic environments. While the widespread Cenozoic alkaline basalts have been intensively studied and are comparatively well-known, their Cretaceous precursors were often associated with the Alpine-Carpathian orogenic zones, and so their genesis and geodynamic setting are partially obscured by superimposed deformation and alteration. We describe a newly discovered body of melanephelionites inserted within the Upper Cretaceous deep-marine pelagic succession of the Pieniny Klippen Belt in Western Slovakia. The body consists of hyaloclastic lavas of nephelinitic composition. The mineralogical composition and geochemical features of the Vršatec volcanites correspond to melanephelinites. Reconstruction of the geodynamic setting of the Cretaceous mafic alkaline volcanism in the Alpine-Carpathian-Pannonian realm infers a general extensional/rifting tectonic regime that ultimately led to the opening of Penninic oceanic rift arms. However, this rifting started as basically passive and non-volcanic. Only during the later, post-breakup extension phases did the slow-spreading oceanic ridges develop, which are characterized by the MORB-type (mid-ocean-ridge basin) basaltic volcanism. Alkaline volcanic provinces have a linear character and appear to follow passive continental margins of Penninic oceanic arms opened during the Jurassic and Early Cretaceous. We infer that alkaline volcanism resulted from heating and partial melting of the subcontinental mantle lithosphere on the peripheries of asthenospheric upwellings confined to slow-spreading ridges of the Alpine Tethys. Consequently, regarding the debate about the plume vs. non-plume origin of the Cretaceous alkaline volcanism, the geological data from this area rather support the latter affinity.
Źródło:
Geological Quarterly; 2011, 55, 1; 27-48
1641-7291
Pojawia się w:
Geological Quarterly
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Uranium-rich monazite-(Ce) from the Krivá type granitic boulders in conglomerates of the Pieniny Klippen Belt, Western Carpathians, Slovakia : composition, age determination and possible source areas
Autorzy:
Uher, P.
Plašienka, D.
Ondrejka, M.
Hraško, L.
Konečný, P.
Powiązania:
https://bibliotekanauki.pl/articles/2059734.pdf
Data publikacji:
2013
Wydawca:
Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy
Tematy:
uranium-rich monazite
granite
conglomerate
monazite dating
Pieniny Klippen Belt
Western Carpa
Opis:
Monazite-(Ce) is a widespread accessory mineral in granitic cobbles of the Krivá type (Zástranie and Krivá localities) in polymict conglomerates of Cretaceous flysch sequences, the Pieniny Klippen Belt, Western Carpathians, NW Slovakia. The granites show leucocratic muscovite-biotite granodiorite composition and peraluminous calc-alkaline, S-type character. The monazite contains unusually high U, commonly 1 to 3, and in some places up to 6.6 wt.% UO2, together with 5 to 7.7 wt.% ThO2. A cheralite-type substitution [Ca(U,Th)REE–2 is the dominant mechanism of U4+ + Th4+ incorporation into the monazite structure in the Zástranie sample, whereas both cheralite- and huttonite-type substitution [(Th,U)SiREE–1P–1] are evident in the Krivá granitic cobble. Uranium alone prefers the CaU4+(REE)–2 mechanism, whereas Th favours the huttonite substitution. The chemical U-Th-Pb dating of monazite from both granitic cobbles show an Early Carboniferous age (346 ± 2 Ma), which is consistent with the main meso-Variscan, orogen-related plutonic activity in the Central Carpathian area (Tatric and Veporic superunits). Analogous U-rich monazites were detected in some Variscan S-type leucogranites of the Rimavica massif (South Veporic Unit) and the Bojná and Bratislava massifs (northern part of the Tatric Unit). On the basis of structural and palaeogeographic data, the North Tatric Zone is the most plausible source of the monazite-bearing granitic boulders in the Pieniny Klippen Belt. However, the source granitic body was most likely hidden by ensuing tectonic shortening along the northern Tatric edge after deposition of the Coniacian–Santonian Upohlav type conglomerates.
Źródło:
Geological Quarterly; 2013, 57, 2; 343--352
1641-7291
Pojawia się w:
Geological Quarterly
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies