Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "East European Craton" wg kryterium: Wszystkie pola


Wyświetlanie 1-14 z 14
Tytuł:
The stratigraphy of Zechstein strata in the East European Craton of Poland : an overview
Autorzy:
Peryt, Tadeusz Marek
Skowroński, Leszek
Powiązania:
https://bibliotekanauki.pl/articles/2060632.pdf
Data publikacji:
2021
Wydawca:
Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy
Tematy:
Zechstein
stratigraphy
palaeogeography
East European Craton
Main Dolomite
Platy Dolomite
Polska
Opis:
The sedimentary and stratigraphic patterns established for Zechstein of the western part of the Peribaltic Syneclise (and in particular the eastern Łeba Elevation) were applied to other parts of the East European Craton (EEC) in Poland: the eastern Peribaltic Syneclise and the Podlasie region. A very large number of mostly fully-cored borehole sections in the Puck Bay region certainly predestines the eastern Łeba Elevation area to use it as a model. The most part of the EEC, except of its part adjacent to the Teisseyre-Tornquist Zone, during the Zechstein deposition represents the marginal parts of the basin. The fauna occurring in the Zechstein carbonate deposits of the EEC makes it possible to distinguish between the Zechstein Limestone and the younger carbonate strata, but certainly not between the Main Dolomite and the Platy Dolomite and hence the facies models for the Zechstein that have been previously developed in the western part of the Peribaltic Syneclise augmented by sequence stratigraphic approach seem to be the best tool to apply in other peripheral areas in the EEC area. The Zechstein sequence in the western part of the Peribaltic Syneclise consists, in general terms, of three parts: (1) carbonate platform of the Zechstein Limestone (occurring only in the north-westernmost corner of the study area and passing into basin facies dominant in the most part of the area); (2) the PZ1 evaporite platform system composed of sulphate platforms and adjacent basin system and constituting the major part of the Zechstein sequence; and (3) the Upper Anhydrite-PZ3 cover. There is a consensus, as far as the western part of the Peribaltic Syneclise is concerned, that the Platy Dolomite platform is wider than the Main Dolomite platform. In the easternmost part of the Peribaltic Syneclise, the stratigraphical interpretations are diverse. We have included the anhydrite overlying the Zechstein Limestone into the Upper Anhydrite, and concluded that the overlying interbedded mudstone and anhydrite also belong to the Upper Anhydrite. When above the Upper Anhydrite one carbonate unit occurs, it is assigned either to the Main Dolomite and Platy Dolomite, or to the Platy Dolomite. The same conclusion is proposed for the marginal parts of the Podlasie Bay. The deposition of Zechstein Limestone resulted in the origin of carbonate platforms along the basin margins which changed an inherited topographic setting. The Lower Anhydrite deposits are lowstand systems tracts (LST) deposits, lacking in more marginal parts of the western and eastern Peribaltic Syneclise and in the major part of the Podlasie Bay. The accommodation space existed and/or created during the Lower Anhydrite and the Oldest Halite deposition in the Baltic and Podlasie bays was filled and at the onset of the Upper Anhydrite deposition, a roughly planar surface existed except in the area ad jacent to the main Polish basin. The Upper Anhydrite deposits are transgressive systems tracts deposits and then highstand systems tracts deposits and they encroached the Zechstein Limestone platforms. The Upper Anhydrite deposition was terminated by sea level fall, and the Upper Anhydrite deposits in the marginal areas became subject to karstification. The Main Dolomite transgression took place in several phases but its maximum limit did not reach the Upper Anhydrite limit. The deposition of the PZ2 chlorides (LST deposits) resulted in the filling of the accommodation space that was inherited after the deposition of the Main Dolomite and the Basal Anhydrite. Subsequently, the area became exposed, and marine deposits (Grey Pelite and Platy Dolomite) related to the last major transgression during the life of the Zechstein basin that resulted in a flooding of the exposed surface of older Zechstein deposits, including the area that was emergent during deposition of the PZ2 cycle. Microbial carbonates, being stromatolites and thrombolites, are a common feature of all Zechstein carbonate units but in particular this is the case of the Platy Dolomite. There are no direct premises allowing for convincing settlement doubts regarding the stratigraphical position of the upper carbonate unit in many cases, but several lines of evidence suggest that, as in the entire Zechstein basin, the Main Dolomite considerably shifted basinward, and the Platy Dolomite - landward, although it is difficult to ascertain whether the original Platy Dolomite extent was similar to or greater than the limit of the Zechstein Limestone as elsewhere in the Zechstein Basin.
Źródło:
Geological Quarterly; 2021, 65, 4; 21--27
1641-7291
Pojawia się w:
Geological Quarterly
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Neoproterozoic flood basalts of the upper beds of the Volhynian Series (East European Craton)
Autorzy:
Białowolska, A.
Bakun-Czubarow, N.
Fedoryshyn, Y.
Powiązania:
https://bibliotekanauki.pl/articles/2059908.pdf
Data publikacji:
2002
Wydawca:
Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy
Tematy:
Volhynian Series
Ratno Beds
flood basalts
fractional crystallisation
liquation
palagonite
copper mineralisation
Opis:
The effusive rocks of the Ratno Beds of the Volhynian Series known from the western slope of the Ukrainian Shield are represented by lower Vendian flood basalts whose normative composition is that of quartz tholeiites. These are plagioclase-pyroxene basalts displaying intergranular, intersertal, doleritic, ophitic and amygdaloidal textures; they range from aphanitic to medium-grained and contain about 7 vol. % of palagonite - an altered glass with a high iron and considerable magnesium content. The range in composition of plagioclases (andesine-bytownite) and clinopyroxenes (augite-ferropigeonite) suggests that the Ratno Beds basalts formed by fractional crystallisation of a parent magma. Residual magma underwent liquation, producing a separate acid glass (69-73 wt. % of SiO2) phase within a basic one considerably poorer in SiO2 but rich in iron and magnesium. The Ratno Beds basalts are relatively rich in silica, iron, titanium and vanadium as well as in REE and LREE in particular but poor in Ni, Co and Cr. Normative composition, geochemical characteristics and tectonic position suggest classification as continental quartz tholeiites. Hydrothermal solutions are responsible for rich native copper mineralisation in basalts of certain parts of Volhynia (Ivance and Policy). The Vendian volcanism of the Volhynian Series lithologically correlated with the Sławatycze Series of eastern Poland, can be related to continental rifting accompanying the breakup of Rodinia, with crustal fractures mainly running concordantly with the suture zone between Fennoscandia and Sarmatia, thus almost perpendicular to the Tornquist rift; other fracture trends may also have controlled Vendian volcanism.
Źródło:
Geological Quarterly; 2002, 46, 1; 37-58
1641-7291
Pojawia się w:
Geological Quarterly
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Łysogóry Unit (Central Poland) versus East European Craton - application of sedimentological data from Cambrian siliciclastic association
Autorzy:
Jaworowski, K.
Sikorska, M.
Powiązania:
https://bibliotekanauki.pl/articles/2058939.pdf
Data publikacji:
2006
Wydawca:
Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy
Tematy:
Central Poland
East European Craton
Cambrian
passive margin
siliciclastic association
Caledonian deformations
Opis:
TheMiddle and Late Cambrian deposits of the Łysogóry Unit and the Early and Middle Cambrian deposits of the East European Craton form part of an extensive siliciclastic sedimentary prism that was deposited on a tide and storm influenced continental shelf. In SE Poland, the proximal part of the Cambrian passive margin sedimentary prism of the East European Craton (Baltica) corresponds to the Łysogóry Unit whereas the NE part of the Małopolska Massif is thought to represent its distal part. Based on sedimentological criteria, the Cambrian siliciclastic association appears to indicate that the Łysogóry Unit and Małopolska Massif were not detached from Baltica during the breakup of the Precambrian Rodinia supercontinent, thus casting serious doubt on the exotic terrane nature of the Holy Cross Mts. Neither the Łysogóry Unit nor the Małopolska Massif are terranes in so far as they were not subject to lateral translations along the margin of Baltica. The Cambrian phases of Caledonian deformations in the Holy Cross Mts. may be explained in terms of rotational block movements controlled by large-scale listric normal faults dipping off the craton.
Źródło:
Geological Quarterly; 2006, 50, 1; 77-88
1641-7291
Pojawia się w:
Geological Quarterly
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Lithospheric structure of the western part of the East European Craton investigated by deep seismic profiles
Autorzy:
Grad, M.
Janik, T.
Guterch, A.
Środa, P.
Czuba, W.
Powiązania:
https://bibliotekanauki.pl/articles/2058944.pdf
Data publikacji:
2006
Wydawca:
Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy
Tematy:
East European Craton
crustal structure
mantle reflectors
deep seismic refraction
seismic ray tracing
Opis:
The Palaeoproterozoic collision of Archaean Fennoscandia, Volgo-Uralia and Sarmatia, viewed as a large composite of terranes, each with an independent history during Archaean and Early Proterozoic time, formed the East European Craton. This paper summarizes the results of deep seismic sounding investigations of the lithospheric structure of the southwestern part of the East European Craton. On the basis of the modern EUROBRIDGE’94–97, POLONAISE’97 and CELEBRATION 2000 projects, as well as of data from the Coast Profile and from reinterpreted profiles VIII and XXIV, the main tectonic units of Fennoscandia and Sarmatia are characterized. The crustal thickness in the whole area investigated is relatively uniform, being between 40 and 50 km (maximum about 55 km). For Fennoscandia, the crystalline crust of the craton can be generally divided into three parts, while in Sarmatia the transition between the middle and lower crust is smooth. For both areas, relatively high P-wave velocities ( 7.0 km/s) were observed in the lower crust. Relatively high seismic velocities of the sub-Moho mantle (~8.2–8.3 km/s) were observed along most of the profiles. The uppermost mantle reflectors often occur ca. 10 to 15 km below the Moho. Finally, we show the variability in physical properties for the major geological domains of Fennoscandia and Sarmatia, which were crossed by the network of our profiles.
Źródło:
Geological Quarterly; 2006, 50, 1; 9-22
1641-7291
Pojawia się w:
Geological Quarterly
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Crustal-scale complexity of the contact zone between the Palaeozoic Platform and the East European Craton in the NWPoland
Autorzy:
Królikowski, C.
Powiązania:
https://bibliotekanauki.pl/articles/2058936.pdf
Data publikacji:
2006
Wydawca:
Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy
Tematy:
edge of the craton
seismic cross-sections
magnetic anomalies
geothermal field
Opis:
Hypotheses on the trace and nature of the SW margin of the East European Craton (EEC) are reviewed. As new geophysical data was acquired, the location of the EEC margin was repeatedly revised.Magnetic anomalies associated with the SWpart of the EEC and their relationship with the contact zone between the EEC and the Palaeozoic Platform are described. Based on an analysis of magnetic anomalies, seismic cross-sections, the LT-7, P1, P2 and P4 wide-angle reflection and refraction profiles, and the results of recent geothermal modeling, the geometry of the contact zone between the EEC and the Palaeozoic Platform in NW Poland has been redefined. Three important boundaries are distinguished, namely the Teisseyre-Tornquist Line marking the SW limit of the EEC at upper and middle crustal levels, the SW margin of the West Pomeranian Magnetic Anomaly that delimits the NE extension of the reversely magnetised lower crust of the Palaeozoic Platform, and the SWtermination of the high velocity lower crust of the EEC. These boundaries and their characteristics reflect the tectonic complexity of the SW margin of the EEC in its Polish sector.
Źródło:
Geological Quarterly; 2006, 50, 1; 33-42
1641-7291
Pojawia się w:
Geological Quarterly
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
3D geological and potential field modelling of the buried alkaline-carbonatite Tajno massif (East European Craton, NE Poland)
Autorzy:
Petecki, Zdzisław
Rosowiecka, Olga
Krzemiński, Leszek
Powiązania:
https://bibliotekanauki.pl/articles/2104773.pdf
Data publikacji:
2022
Wydawca:
Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy
Tematy:
Tajno alkaline massif
NE Poland
3D geological modelling
3D geophysical modelling
GeoModeller
Opis:
Geological and geophysical data are used to model the 3D geometry of the Tajno alkaline massif intruded during the Early Carboniferous in NE Poland. The massif consists mainly of pyroxenite, mafic intrusive and volcanic rocks, and carbonatites containing rare earth elements (REE) and other important mineral resources. The deep structure of the massif, and its thickness, shape and internal structure, has been poorly known making it impossible to properly search for useful mineral resources. In order to better constrain the distribution, geometries and relationships between the main rock types, a 3D geological model of the Tajno massif has been developed. The input data comprise a set of geological cross-sections built on an updated subsurface geological map, and borehole, magnetic and gravity data. 3D Geomodeller software was applied to integrate geological data into a coherent and geologically feasible model of the massif using geostatistical analysis. The magnetic and gravity data were used to constrain the 3D geological modelling results. The final 3D model is thus compatible with the geological data, as well as with geophysical data. The most important conclusions obtained from the modelling are as follows: (i) a higher proportion of nepheline syenites or tuffs and pyroclastic breccia in relation to pyroxenites; and, (ii) a smaller proportion of chimney breccia relative to chimney-hosted tuffs and volcanic breccia than proposed in previous geological interpretation. These results are important for further studies on the evolution of the Tajno massif and its associated carbonatites.
Źródło:
Geological Quarterly; 2022, 66, 1; art. no. 10
1641-7291
Pojawia się w:
Geological Quarterly
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Remarks on the correlation of tectonic blocks in the foreland of the East European Craton in Poland with those in Ukraine
Autorzy:
Mizerski, W.
Stupka, O.
Olczak-Dusseldorp, I.
Powiązania:
https://bibliotekanauki.pl/articles/2060196.pdf
Data publikacji:
2016
Wydawca:
Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy
Tematy:
marginal part of the East-European Craton
Holy Cross Mountains
Western Ukraine
tectonics
geotectonic evolution
Opis:
According to common interpretations, two narrow crustal blocks are supposed to occur on the south-western edge or in the foreland of the East European Craton. The first one, bounded on the NE by the Nowe Miasto-Radom-Rava Ruska fault system, and on the SW by the Holy Cross Fault, stretches NW-SE from the Łysogóry-Radom region in Poland to the Rava Ruska Zone in Ukraine. The second one, bounded on the NE by the Holy Cross Fault, and from the SW by the Chmielnik-Ryszkowa Wola–Krakovets fault zone, is thought to tie together the Kielce area of the Holy Cross region with the Kokhanivka Zone in Ukraine. Both these blocks may have formed in connection with the development of regional listric faults during Precambrian asymmetric stretching of the Baltica continent, and were part of the marginal zone of the East European Craton. The sedimentary development of the blocks can be comparable to the Blake Plateau off the Florida coast. Both the Paleozoic sections and tectonic deformation styles in the Polish and Ukrainian segments of these blocks are different. Paleozoic tectonic structures of the Holy Cross region have a southern vergence, while the Paleozoic rocks of the Rava Ruska and Kokhanivka regions in western Ukraine are thrust towards the NE. This demonstrates the different tectonic evolution of the Paleozoic succession between the Holy Cross region and western Ukraine, and makes questionable the genetic relationships between these two regions. In this situation, the tectonic blocks of the foreland should be considered heterogeneous. Structural-facies evidence suggests that the SW boundary of the East European Craton should be moved at least to the Chmielnik–Ryszkowa Wola-Krakovets fault.
Źródło:
Geological Quarterly; 2016, 60, 1; 124--132
1641-7291
Pojawia się w:
Geological Quarterly
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Prospective zones of unconventional hydrocarbon reservoirs in the Cambrian, Ordovician and Silurian shale formations of the East European Craton marginal zone in Poland
Autorzy:
Podhalańska, Teresa
Feldman-Olszewska, Anna
Roszkowska-Remin, Joanna
Janas, Marcin
Pachytel, Radomir
Głuszyński, Andrzej
Roman, Michał
Powiązania:
https://bibliotekanauki.pl/articles/2059664.pdf
Data publikacji:
2020
Wydawca:
Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy
Tematy:
unconventional hydrocarbon systems
prospective zones
Lower Paleozoic
East European Craton
Polska
Opis:
The paper presents the latest state of knowledge on the vertical and lateral ranges and characteristics of prospective zones (PZ) within the Lower Paleozoic unconventional hydrocarbon systems in the Baltic-Podlasie-Lublin Basin (Poland). The PZ were identified within the prospective formations based on rigorously determined criteria with the application of stratigraphic, sedimentological, mineralogical, petrographic, geochemical, petrophysical, and geomechanical studies, and interpretations of borehole logs. Archival geological data and information acquired from boreholes drilled recently in concession areas have also been applied in the interpretations. Following these criteria, four prospective zones have been distinguished. The deposits encompass partly or almost completely the Piaśnica, Sasino, and Jantar formations and the lower part of the Pelplin Formation. The characteristic feature of the Lower Paleozoic deposits at the East European Craton (EEC) margin in Poland is the diachronous appearance of the Sasino and Jantar black shale formations from west to east. The Baltic area is most prospective for the occurrence of unconventional hydrocarbon reservoirs in shale formations, specifically the Łeba Elevation, where all 4 prospective zones have been distinguished. The occurrence of liquid and gaseous hydrocarbons is expected in all zones. Due to the very high TOC content and geochemical characteristics, the Piaśnica Formation within PZ1 is the main petroleum source rock in the Polish part of the Baltic Basin. PZ2 (partly corresponding to the Sasino Formation) present in a large part of the Baltic Basin, is the next important prospective unit, despite not being uniform. PZ3 within the Jantar Formation was distinguished only on a limited area of the Łeba Elevation. Due to the low content of organic matter, the Lublin area is characterized by the lowest hydrocarbon potential. However, low values of that parameter are compensated by a greater thickness and lateral range of PZ4, partly corresponding to the Pelplin Formation. Comparison with other areas within the Lower Paleozoic Baltic Basin reveals the occurrence of shale deposits that may constitute a potential source of hydrocarbons, and that demonstrate diachronism. Towards the east and south-east, ever younger deposits possess the potential for hydrocarbon accumulations. In Poland, in the western part of EEC, these are: the Furongian and the Lower Tremadocian Piaśnica Formation, the Sandbian and Katian Sasino Formation and the Lower/Middle Llandovery (Rhuddanian and Aeronian) Jantar Formation. In the central part of the Baltic Basin (Lithuania), these are the Upper Ordovician and Aeronian shale successions. In the southeastern part of the basin (Ukraine), the Ludlow strata are considered to be the most promising in terms of the potential unconventional hydrocarbons accumulations.
Źródło:
Geological Quarterly; 2020, 64, 2; 342--376
1641-7291
Pojawia się w:
Geological Quarterly
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Kock Fault Zone as an indicator of tectonic stress regime changes at the margin of the East European Craton (Poland)
Autorzy:
Tomaszczyk, M.
Jarosiński, M.
Powiązania:
https://bibliotekanauki.pl/articles/2060563.pdf
Data publikacji:
2017
Wydawca:
Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy
Tematy:
tectonics
seismic interpretation
borehole core analysis
Kock Fault Zone
Lublin Basin
Opis:
Integrated tectonic interpretation of seismic data and core samples from boreholes in the vicinity of the Kock Fault Zone (KFZ) allowed us to identify several tectonic deformation events that were responsible for creating its complex structure. The KFZ is an example of a mechanically weak regional-scale tectonic structure that accumulated deformation over hundreds of millions of years and therefore is a good indicator of stress regime changes in a broader area. The KFZ is here regarded as a combination and superposition of two genetically and temporally different faults: the older Kock Fault, which is an inverted normal fault, and the younger, low-angle Kock Thrust. The first, Silurian stage of KFZ evolution occurred in a tensional stress regime that gave rise to the activation of a deeply rooted normal-slip precursor to the Kock Fault. Subsequently, this fault underwent inversion during the Late Famennian compressive/transpressive event. In the Early Carboniferous, the tectonic stress regime changed into tension/transtension, leading to extrusion of basalt magma and abundant mineralisation in the vicinity of the inverted Kock Fault, followed by tectonically relaxed sedimentation of Carboniferous strata. The deposition was terminated by a compressional event at the end of the Westphalian. Contraction resulted in the formation of the low-angle Kock Thrust decoupled in Silurian shale that cut across the upper part of the Kock Fault and displaced it towards the NE, over the East European Craton foreland.
Źródło:
Geological Quarterly; 2017, 61, 4; 908--925
1641-7291
Pojawia się w:
Geological Quarterly
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Seismic structure of the lithosphere between the East European Craton and the Carpathians from the net of CELEBRATION 2000 profiles in SE Poland
Autorzy:
Janik, T.
Grad, M.
Guterch, A.
Powiązania:
https://bibliotekanauki.pl/articles/2059121.pdf
Data publikacji:
2009
Wydawca:
Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy
Tematy:
lithospheric structure
East European Craton
Trans-European Suture Zone
Carpathians
deep seismic soundings
Moho map
Opis:
During the CELEBRATION 2000 experiment, the area of SE Poland was investigated by relatively dense system of deep seismic sounding profiles. Apart from five main profiles CEL01–CEL05, eight additional profiles were executed between the edge of the East European Craton and the Carphatians: CEL06, CEL11, CEL12, CEL13, CEL14, CEL21, CEL22 and CEL23. In this paper, we present results of modelling of refracted and reflected waves with use of a 2D ray tracing technique. All 13 profiles were jointly inter reted with verification of models at crossing points, and a quasi 3D model of the crust and upper mantle was developed. The obtained P-wave velocity models of the crust and uppermost mantle are very complex and show a differentiation of the seismic structure for tectonic units in SE Poland. The depth of the Moho discontinuity in the investigated area changes from about 30 to about 52 km. As a summary of all seismic models, the Moho depth map for SE Poland is presented, as well as a map of the extent of the most characteristic crustal elements in the area: a high velocity body in the upper crust, division into two- and three-layer consolidated crust, ranges of very deep layers with low velocities in the upper and middle crust, aproximate ranges of detected velocity anisotropy in the upper/middle crust, ranges of the high-velocity lower crust and high-velocity uppermost mantle. Both maps are com pared with the main struc tural el e ments from tec tonic map. This could form the base for a new geotectonic in ter pre ta tion of this com plex area.
Źródło:
Geological Quarterly; 2009, 53, 1; 141-158
1641-7291
Pojawia się w:
Geological Quarterly
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Tajno ultramafic-alkaline-carbonatite massif, NE Poland : a review. Geophysics, petrology, geochronology and isotopic signature
Autorzy:
Wiszniewska, Janina
Petecki, Zdzisław
Krzemińska, Ewa
Grabarczyk, Anna
Demaiffe, Daniel
Powiązania:
https://bibliotekanauki.pl/articles/2059668.pdf
Data publikacji:
2020
Wydawca:
Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy
Tematy:
Tajno intrusion
East European Craton
ultramafic complex
alkaline complex
carbonatitic complex
Carboniferous
Opis:
This paper reviews all available geological data on the Tajno Massif that intruded the Paleoproterozoic crystalline basement of NE Poland (Mazowsze Domain) north of the Teisseyre-Tornquist Zone, on the East European Craton. This massif (and the nearby Ełk and Pisz intrusions) occurs beneath a thick Mesozoic-Cenozoic sedimentary cover. It has first been recognized by geophysical (magnetic and gravity) investigations, then by drilling (12 boreholes down to 1800 m). The main rock types identified (clinopyroxenites, syenites, carbonatites cut by later multiphase volcanic/subvolcanic dykes) allow characterizing this massif as a differentiated ultramafic, alkaline and carbonatite complex, quite comparable to the numerous massifs of the Late Devonian Kola Province of NW Russia. Recent geochronological data (U-Pb on zircon from an albitite and Re-Os on pyrrhotite from a carbonatite) indicate that the massif was emplaced at ~348 Ma (Early Carboniferous). All the rocks, but more specifically the carbonatites, are enriched in Sr, Ba and LREE, like many carbonatites worldwide, but depleted in high field strength elements (Ti, Nb, Ta, Zr). The initial87Sr/86Sr (0.70370 to 0.70380) and ɛNd(t) (+3.3 to +0.7) isotopic compositions of carbonatites plot in the depleted quadrant of the Nd-Sr diagram, close to the “FOcal ZOne” deep mantle domain. The Pb isotopic data (206Pb/204Pb <18.50) do not point to an HIMU (high U/Pb) source. The ranges of C and O stable isotopic compositions of the carbonatites are quite large; some data plot in (or close to) the “Primary Igneous Carbonatite” box, while others extend to much higher, typically crustal ẟ18O and ẟ13C values.
Źródło:
Geological Quarterly; 2020, 64, 2; 402--421
1641-7291
Pojawia się w:
Geological Quarterly
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Internal structure of the buried Suwałki Anorthosite Massif (East European Craton, NE Poland) based on borehole, magnetic and gravity data combined with new petrological results
Autorzy:
Petecki, Zdzisław
Wiszniewska, Janina
Powiązania:
https://bibliotekanauki.pl/articles/2058851.pdf
Data publikacji:
2021
Wydawca:
Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy
Tematy:
AMCG pluton
Suwałki Anorthosite Massif
potential field analysis
remanent magnetization
modeling of gravity
magnetic data
geological map
Opis:
Advanced magnetic and gravity data analysis has been used to acquire geophysical constraints providing new insights into the geological structure of the Suwałki Anorthosite Massif (SAM). The large negative magnetic anomaly of the SAM anorthosite intrusion is a result of the negative inclination of remanent magnetization, directed antiparallel to the present Earth’s magnetic field. Several filtering processes were applied to the magnetic and gravity maps to better understand the subsurface geology of the SAM area. The geological analysis of residual magnetic and gravity anomaly maps reveals the presence of different rock units, reflecting variation in petrological composition of the crystalline basement rocks. The 2-D modelling of magnetic and gravity data delineate the location and extent of the anorthosite-norite massif. The data is consistent with a thick upper crustal body with density 2690 kg/m3, low susceptibility (0.005 SI) and natural remanent magnetization (1.95 A/m), having inclination of I = –68°, and declination of D = –177°. The rocks bordering the central anorthosite body consist of norite and gabbronorite, granodiorite, diorite and charnockite. These main crystalline basement crustal units are shown more precisely on a new geological map of the SAM.
Źródło:
Geological Quarterly; 2021, 65, 1; 4
1641-7291
Pojawia się w:
Geological Quarterly
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Geological section through the lower Paleozoic strata of the Polish part of the Baltic region
Autorzy:
Pokorski, J.
Powiązania:
https://bibliotekanauki.pl/articles/2059065.pdf
Data publikacji:
2010
Wydawca:
Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy
Tematy:
Lower Paleozoic
Baltic Region
East European Craton
West European Platform
faults and fault zones
structural elements
Opis:
The present-day structural pattern of the Baltic Depression developed due to superimposition of three main deformation phases: syn-Caledonian (after the Silurian), syn-Variscan (at the end of Carboniferous and beginning of Permian) and syn-Alpine (latest Mesozoic or earliest Cenozoic). The major restructuring of the area occurred as a result of syn-Variscan deformation that took place in latest Carboniferous and earliest Permian times. Most of the faults developed or became reactivated probably at that time. Syn-Alpine deformation manifested itself relatively weakly, mainly by reactivation of some pre-existing faults.
Źródło:
Geological Quarterly; 2010, 54, 2; 123-130
1641-7291
Pojawia się w:
Geological Quarterly
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Structure and development of the Valmiera-Lokno Uplift – a highly elevated basement block with a strongly deformed and eroded platform cover in the East European Craton interior around the Estonian-Latvian-Russian borderland
Autorzy:
Tuuling, I.
Vaher, R.
Powiązania:
https://bibliotekanauki.pl/articles/2060409.pdf
Data publikacji:
2018
Wydawca:
Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy
Tematy:
East European Craton interior
Baltic Homocline-Baltic Syneclise junction
Liepaja-Riga-Pskov Fault Zone
Valmiera-Lokno Uplift
platform cover basement-cored anticlines
strike-slip movements
Opis:
Based on drillings, a number of geological cross-sections, and structure contour and isopach maps were composed to describe/analyse the structure and development of the Valmiera-Lokno Uplift (VLU), a basement block elevated up to 700 m with a heavily deformed and eroded platform cover in the East European Craton interior, along the regional Liepaja-Riga-Pskov Fault Zone (LRPFZ). Five isolated basement-cored anticlines (BCA), the Lokno, Haanja, Mõniste, Valmiera and Smiltene uplifts, arise in the platform cover on the VLU, whereas the downthrown LRPFZ side defines a complex monoclinal fold. The anticlines, straddling or occurring near the monocline, merge with it and thus have highly asymmetrical shapes. Thickness changes of stratigraphic units across the VLU reveal its complex history, reflecting regional tectonic activation pulses that varied noticeably even between neighbouring BCAs. In all, the latest Precambrian-earliest Ordovician initiation epoch of the VLU was followed by modest tectonic activity or a standstill period in the Middle Ordovician-Early Silurian. Intensifying tectonic movements culminated again in the prime of the Caledonian Orogeny in latest Silurian-earliest Devonian time, and faded thereafter towards the end of Early Devonian. The VLU has been reactivated occasionally since the latest Devonian and emerges as a crustal weakness in the recent movement and seismicity patterns. To decipher the origin of the VLU, hitherto factually undiscussed topics, a more detailed study of the LRPFZ, analysis of its fault pattern and kinematics alongside the regional tectonic setting/history is needed. A cursory look hints to a substantial Early Paleozoic sinistral strike-slip along the LRPFZ, allowing interpreting the VLU as a possible restraining bend structure.
Źródło:
Geological Quarterly; 2018, 62, 3; 579--596
1641-7291
Pojawia się w:
Geological Quarterly
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-14 z 14

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies