Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "turing" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Turing’s Wager?
Autorzy:
Copeland, B. Jack
Proudfoot, Diane
Powiązania:
https://bibliotekanauki.pl/articles/31233733.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Instytut Filozofii i Socjologii PAN
Tematy:
Alan Turing
Turing’s Wager
mechanized encryption
laws of behaviour
unspecifiability of the mind
brain modelling
whole-brain simulation
cipher machines
Enigma
fish
Tunny
early computer-based cryptography
Opis:
We examine Turing’s intriguing claim, made in the philosophy journal Mind, that he had created a short computer program of such a nature that it would be impossible “to discover by observation sufficient about it to predict its future behaviour, and this within a reasonable time, say a thousand years” (Turing, 1950, p. 457). A program like this would naturally have cryptographic applications, and we explore how the program would most likely have functioned. Importantly, a myth has recently grown up around this program of Turing’s, namely that it can be used as the basis of an argument—and was so used by Turing—to support the conclusion that it is impossible to infer a detailed mathematical description of the human brain within a practicable timescale. This alleged argument of Turing’s has been dubbed “Turing’s Wager” (Thwaites, Soltan, Wieser, Nimmo-Smith, 2017, p. 3) We demonstrate that this argument—in fact nowhere to be found in Turing’s work—is worthless, since it commits a glaring logical fallacy. “Turing’s Wager” gives no grounds for pessimism about the prospects for understanding and simulating the human brain.
Źródło:
Filozofia i Nauka; 2023, 11; 23-36
2300-4711
2545-1936
Pojawia się w:
Filozofia i Nauka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Computational and Pragmatic Approach to the Dynamics of Science
Autorzy:
Marciszewski, Witold
Powiązania:
https://bibliotekanauki.pl/articles/41310393.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Instytut Filozofii i Socjologii PAN
Tematy:
algorithm
behavioral (vs declarative) knowledge
computability
corroboration
innate knowledge
intuition
invention
logic gates
oracle
pragmatic (vs classical) rationalism
problem-solving
reasoning
symbolic logic
Turing machine
Opis:
Science means here mathematics and those empirical disciplines which avail themselves of mathematical models. The pragmatic approach is conceived in Karl R. Popper’s The Logic of Scientific Discovery (p. 276) sense: a logical appraisal of the success of a theory amounts to the appraisal of its corroboration. This kind of appraisal is exemplified in section 6 by a case study—on how Isaac Newton justified his theory of gravitation. The computational approach in problem-solving processes consists in considering them in terms of computability: either as being performed according to a model of computation in a narrower sense, e.g., the Turing machine, or in a wider perspective—of machines associated with a non-mechanical device called “oracle” by Alan Turing (1939). Oracle can be interpreted as computertheoretic representation of intuition or invention. Computational approach in another sense means considering problem-solving processes in terms of logical gates, supposed to be a physical basis for solving problems with a reasoning. Pragmatic rationalism about science, seen at the background of classical rationalism (Descartes, Gottfried Leibniz etc.), claims that any scientific idea, either in empirical theories or in mathematics, should be checked through applications to problem-solving processes. Both the versions claim the existence of abstract objects, available to intellectual intuition. The difference concerns the dynamics of science: (i) the classical rationalism regards science as a stationary system that does not need improvements after having reached an optimal state, while (ii) the pragmatical version conceives science as evolving dynamically due to fertile interactions between creative intuitions, or inventions, with mechanical procedures. The dynamics of science is featured with various models, like Derek J. de Solla Price’s exponential and Thomas Kuhn’s paradigm model (the most familiar instances). This essay suggests considering Turing’s idea of oracle as a complementary model to explain most adequately, in terms of exceptional inventiveness, the dynamics of mathematics and mathematizable empirical sciences.
Źródło:
Filozofia i Nauka; 2020, 8, 1; 31-67
2300-4711
2545-1936
Pojawia się w:
Filozofia i Nauka
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies