Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "HoG" wg kryterium: Temat


Wyświetlanie 1-1 z 1
Tytuł:
Analysis of Clothing Image Classification Models: A Comparison Study between Traditional Machine Learning and Deep Learning Models
Autorzy:
Xu, Jun
Wei, Yumeng
Wang, Aichun
Zhao, Heng
Lefloch, Damien
Powiązania:
https://bibliotekanauki.pl/articles/2200761.pdf
Data publikacji:
2022
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Biopolimerów i Włókien Chemicznych
Tematy:
e-commerce
clothing image classification
traditional machine learning
CNN
HOG
SVM
small VGG network
Opis:
Clothing image in the e-commerce industry plays an important role in providing customers with information. This paper divides clothing images into two groups: pure clothing images and dressed clothing images. Targeting small and medium-sized clothing companies or merchants, it compares traditional machine learning and deep learning models to determine suitable models for each group. For pure clothing images, the HOG+SVM algorithm with the Gaussian kernel function obtains the highest classification accuracy of 91.32% as compared to the Small VGG network. For dressed clothing images, the CNN model obtains a higher accuracy than the HOG+SVM algorithm, with the highest accuracy rate of 69.78% for the Small VGG network. Therefore, for end-users with only ordinary computing processors, it is recommended to apply the traditional machine learning algorithm HOG+SVM to classify pure clothing images. The classification of dressed clothing images is performed using a more efficient and less computationally intensive lightweight model, such as the Small VGG network.
Źródło:
Fibres & Textiles in Eastern Europe; 2022, 5 (151); 66--78
1230-3666
2300-7354
Pojawia się w:
Fibres & Textiles in Eastern Europe
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies