Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "elektroprzędzenie" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Elektroprzędzenie i liofilizacja jako metody otrzymywania podłoży dla inżynierii tkankowej
Electrospinning and freeze-drying as methods for fabrication of tissue engineering scaffolds
Autorzy:
Domalik-Pyzik, P.
Morawska-Chochół, A.
Wrona, A.
Chłopek, J.
Rajzer, I.
Powiązania:
https://bibliotekanauki.pl/articles/285216.pdf
Data publikacji:
2013
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Polskie Towarzystwo Biominerałów
Tematy:
elektroprzędzenie
liofilizacja
polilaktyd
polikaprolakton
electrospinning
freeze-drying
polylactide
polycaprolactone
Opis:
Inżynieria tkankowa to interdyscyplinarną dziedziną, której celem jest opracowanie biologicznych substytutów pozwalających na zastąpienie i regenerację uszkodzonej tkanki. Bardzo ważnym jej elementem są podłoża, które stanowią rusztowanie umożliwiające wzrost i różnicowanie się odpowiednich komórek. Przedmiotem niniejszych badań było wytworzenie podłoży z polilaktydu i polikaprolaktonu. Materiały te formowano w dwóch procesach: na drodze elektro-przędzenia z roztworu polimeru oraz poprzez liofilizację, czyli suszenie sublimacyjne. Uzyskano w ten sposób podłoża o różnych właściwościach mechanicznych i mikrostrukturze. Wykazano zasadniczy wpływ metody i parametrów otrzymywania podłoży na ich końcowe właściwości. Wynikiem elektroprzędzenia są materiały włókniste o dużej odkształcalności, podczas gdy liofilizacja prowadzi do wytworzenia porowatych materiałów o wyższej wartości wytrzymałości mechanicznej i modułu Younga. Znaczący wpływ na parametry mechaniczne ma także forma podłoży nanowłóknistych. Podłoża w kształcie rurki cechują się wyższymi parametrami mechanicznymi niż w kształcie płaskich mat. Dodatkowo, wzrost wytrzymałości uzyskano poprzez owinięcie rurek włóknami alginianowymi. Połączenie metod elektroprzędzenia i liofilizacji prowadzi do wytworzenia asymetrycznych podłoży o wyższych parametrach mechanicznych. Metodą elektroprzędzenia otrzymano nanowłókniste materiały w formie mat i rurek, nadające się na podłoża do regeneracji naczyń krwionośnych. Liofilizacja pozwoliła natomiast na wytworzenie podłoży o różnej porowatości i morfologii. Dzięki połączeniu obu metod otrzymano asymetryczne podłoża PLAel/PCL40, które mogą znaleźć zastosowanie w sterowanej regeneracji tkanki kostnej.
Tissue engineering is an interdisciplinary field which purpose is to produce biological substitutes able to replace and regenerate damaged tissue. Scaffolds are very important components because they allow growth and proliferation of appropriate cells. The purpose of this study was to manufacture different scaffolds using polylactide (PLA) and polycaprolactone (PCL). Materials were formed in two processes: electrospinning of a polymer solution and freeze-drying. Therefore it was possible to obtain scaffolds with various mechanical properties and microstructure. The influence of scaffold fabrication method and parameters on its final properties was demonstrated. Electrospinning outcomes were fibrous materials with high deformability, while freeze-drying led to fabrication of porous materials with higher mechanical strength and Young's modulus. The shape of nanofibrous scaffolds had also a significant influence on their mechanical properties. Scaffolds in the shape of a tube were characterized by higher mechanical properties than those in the shape of flat mats. Additional increase in mechanical strength has been achieved by wrapping the tubes with alginate fibers. Combination of electrospinning and freeze-drying contributed to formation of asymmetric scaffolds with better mechanical properties. Nanofibrous materials in the shape of mats and tubes, suitable for vascular engineering scaffolds were fabricated by electrospinning, while freeze-drying allowed for fabrication of scaffolds varying in porosity and morphology. Asymmetric PLAel/PCL40 scaffolds suitable for guided bone regeneration (GBR) were manufactured as a result of combining two above-mentioned methods.
Źródło:
Engineering of Biomaterials; 2013, 16, 120; 2-7
1429-7248
Pojawia się w:
Engineering of Biomaterials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie skaningowej mikroskopii elektronowej do obrazowania oraz charakterystyki nanowłókien polimerowych stosowanych w inżynierii tkankowej
Scanning electron microscopy applied for visualization and characterization of polymer nanofibers for tissue engineering applications
Autorzy:
Karbowniczek, J.
Buzgo, M.
Czyrska-Filemonowicz, A.
Powiązania:
https://bibliotekanauki.pl/articles/285912.pdf
Data publikacji:
2012
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Polskie Towarzystwo Biominerałów
Tematy:
SEM
elektroprzędzenie
nanowłókna polimerowe
rusztowania tkankowe
electrospinning
polymer nanofibers
scaffolds
Opis:
Zastosowanie skaningowej mikroskopii elektronowej (SEM) pozwoliło na zobrazowanie struktury nanowłókien polimerowych otrzymanych techniką elektroprzędzenia. Na podstawie obrazów SEM przeprowadzono analizę morfologii i dystrybucji włókien, jak również wykonano pomiary średnicy włókien oraz wielkości porów. Te parametry są niezbędne do określania zależności między strukturą rusztowań komórkowych, a wzrostem komórek i tworzeniem tkanek.
Scanning electron microscopy (SEM) was applied for visualization of the structure of polymer nanofibres produced by electrospinning method. The SEM images were used for analyses of the fibers' morphology and distribution. The fibers diameter and the size of pores were measured based on the SEM images. These parameters will be useful for determination of the correlation between the scaffold structure and cells growth.
Źródło:
Engineering of Biomaterials; 2012, 15, no. 116-117 spec. iss.; 10-12
1429-7248
Pojawia się w:
Engineering of Biomaterials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Elektroprzędzenie: nanowłókna węglowe z prekursora poliakrylonitrylowego modyfikowanego hydroksyapatytem. Badania nad procesem stabilizacji
Electrospinning: carbon nanofibers from polyacrylonitrile modified by nanohydroxyapatite. Study of stabilization process
Autorzy:
Rajzer, I.
Biniaś, W.
Fabia, J.
Biniaś, D.
Janicki, J.
Powiązania:
https://bibliotekanauki.pl/articles/285504.pdf
Data publikacji:
2009
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Polskie Towarzystwo Biominerałów
Tematy:
nanowłókna węglowe
elektroprzędzenie
proces stabilizacji
hydroksyapatyt
carbon nanofibers
electrospinning
stabilization process
hydroxyapatite
Opis:
Otrzymane metodą elektroprzędzenia włókniny zbudowane z włókien o wymiarach nanometrycznych naśladować mogą budowę i funkcje naturalnej substancji międzykomórkowej (ECM). Ponadto wytworzone tą metodą podłoża umożliwiają otrzymanie przestrzennej porowatej struktury o dużej powierzchni właściwej i połączonej sieci porów, ułatwiającej wzrost i adhezję komórek. W pracy zaproponowano metodę otrzymywania bioaktywnych nanowłóknistych podłoży zbudowanych z kompozytowych włókien PAN/n-HAp. Pierwszym etapem otrzymywania nanowłókien węglowych jest proces stabilizacji w atmosferze utleniającej. W celu lepszego zrozumienia zmian zachodzących we włóknach poliakrylonitrylowych poddanych działaniu wysokiej temperatury przeprowadzono badania SEM, DSC i FTIR.
The electrospun fabrics with nanoscale fibers diameters mimic morphological nano-features of native extracellular matrix (ECM). Moreover scaffolds fabricated by electrospinning method provide a large surface area, porosity and well interconnected pore network structure to facilitate cell adhesion and growth. In this paper we have proposed a method to obtain bioactive nanofibrous scaffold consisting of PAN/n-HAp nanofibers. Stabilization process in an oxidative atmosphere, as a first step to obtain carbon nanofibers, was studied in order to better understand morphological rearrangements taking place in PAN fibers subjected to high temperatures. Progress of stabilization and the accompanying morphological changes were monitored through SEM, DSC and FTIR methods.
Źródło:
Engineering of Biomaterials; 2009, 12, 86; 22-27
1429-7248
Pojawia się w:
Engineering of Biomaterials
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies