- Tytuł:
- Effect of polylactide modification with β-TCP and lecithin on the properties of the material as a substrate for osteoblasts
- Autorzy:
-
Olkowski, R.
Stefanek, A.
Kaszczewski, P.
Ciach, T.
Lewandowska-Szumieł, M.
Kalaszczyńska, I. - Powiązania:
- https://bibliotekanauki.pl/articles/285423.pdf
- Data publikacji:
- 2015
- Wydawca:
- Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Polskie Towarzystwo Biominerałów
- Tematy:
-
polylactide
lecithin
osteoblasts
scaffold
bone tissue engineering - Opis:
- Polylactide (PLLA) containing β-TCP is biodegradable composite and an attractive biomaterial for bone tissue engineering, however, hydrophobicity of PLLA based composites is major limitation for their use as scaffolds for cell culture. In our study lecithin was used to improve hydrophilicity and cytocompatibility of PLLA/ β-TCP composite. Thin films of PLLA, PLLA/ β-TCP and PLLA/β-TCP/lecithin were manufactured by solvent-casting technique. Comparative analysis of all types of films was performed. Addition of β-TCP did not change hydrophilicity of PLLA. The hydrophilicity of PLLA/β-TCP/lecithin increased in comparison to PLLA and PLLA/β-TCP. Degradation of PLLA/β-TCP composite surpassed the degradation of PLLA while addition of lecithin diminished the degradation of composite. The cytocompatibility of composites were studied in 7 day long in vitro assay. Human bone derived cells were seeded on all tested surfaces. Cell viability was estimated by Live/Dead fluorescent staining and Alamar Blue test. Surprisingly, although lecithin addition improved hydrophilicity of the PLLA-based composite, adhesion and proliferation of human bone derived cells were markedly hampered on PLLA/β-TCP/lecithin in comparison to PLLA and PLLA/β-TCP. Despite positive effect we found of lecithin addition on hydrophilicity and stability of PLLA-based composite, its effect on cell attachment and proliferation is negative. Hence, incorporation of lecithin did not improve properties of PLLA/β-TCP/lecithin composite intended for bone tissue regeneration.
- Źródło:
-
Engineering of Biomaterials; 2015, 18, 131; 8-11
1429-7248 - Pojawia się w:
- Engineering of Biomaterials
- Dostawca treści:
- Biblioteka Nauki