Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Ziółkowski, Andrzej" wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Parametrization of Cauchy stress tensor treated as autonomous object using isotropy angle and skewness angle
Autorzy:
Ziółkowski, Andrzej
Powiązania:
https://bibliotekanauki.pl/articles/38887565.pdf
Data publikacji:
2022
Wydawca:
Instytut Podstawowych Problemów Techniki PAN
Tematy:
Cauchy stress
oriented geometrical object
isotropy angle
skewness angle
isomorphic cylindrical coordinates
pure shear
comparison reference state
anisotropy factor
biaxial tests
simple shear
planar shear
triaxiality factor
Opis:
Intrinsic features (eigenproperties) of the Cauchy stress tensor are discussed. Novelty notions of isotropy and skewness mode angles are introduced for the improved parametric description of spherical (isotropic) and deviatoric (anisotropic) components of stress tensor. The skewness angle is defined with pure shear employed as a comparison reference mode upon observing that pure shear states can be interpreted as elementary (atomic) blocks of any macroscopic deviatoric stress state. An original statistical-physical interpretation of the stress tensor orthogonal invariants is provided. A micromechanical explanation for observed decrease of the stress tensor anisotropy factor values, measured in terms of the tensor orbit diameter, with stress deviator diverging from pure shear mode, is proposed. Explicit reasons explaining why biaxial experimental layouts (simple shear and/or planar shear) are insufficient for the comprehensive characterization of materials properties submitted to complex stress states loadings are presented. New explicit formulas for the triaxiality factor valid for biaxial stress states are delivered.
Źródło:
Engineering Transactions; 2022, 70, 3; 239-286
0867-888X
Pojawia się w:
Engineering Transactions
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Symmetry
Autorzy:
Rychlewski, Jan
Ziółkowski, Andrzej
Powiązania:
https://bibliotekanauki.pl/articles/38902795.pdf
Data publikacji:
2023
Wydawca:
Instytut Podstawowych Problemów Techniki PAN
Tematy:
definition of symmetry
concept of Γ-set
orbits of elements
orbit markers
ornament principle
motif
symmetry of causes and effects
invariant extension of function
Opis:
The concept of symmetry was introduced already by the ancient Greeks in relation to spatial (geometric) systems. They understood it as commensurability and proportionality and linked it with the aesthetic categories of harmony and beauty. A spatial system (object) was considered symmetric if it consisted of regular, repeatable parts of comparable size, creating a coordinated, ordered, larger whole. Only two thousand years later, in the twentieth century, the essence of the concept of symmetry was identified. Symmetry is invariance (stability, durability, constancy) of a feature (geometric, physical, biological, informational, etc.) of an object (an object can here be a geometric system, a material thing, but also a natural phenomenon, physical law, social relation, etc.) after subjecting it to a set of transformations (transformations can be shifts, reflections, rotations, permutations, etc.), with respect to which symmetry is considered. The above observation led to the discovery of the universal nature of the concept of symmetry, which in a broader sense can be understood as a philosophical category, one of the fundamental regularities of mathematical character in the organization of the Universe. The contemporary understanding of symmetry has led to significant and nonobvious conclusions. For example, it turned out that the invariance (symmetry) of the laws of motion with respect to the shift in time is equivalent to the necessity of the existence of the principle of conservation of energy, the invariance (symmetry) of the laws of motion with respect to the shift in physical space proves to be equivalent to the existence of the principle of conservation of momentum. The Report provides an outline of the general formal language of symmetry applicable to the study of any situation in which this concept appears. The key elements of the mathematical apparatus of the algebraic theory of symmetry are defined and discussed, the notions of Γ-sets, orbits, orbital markers, invariants, and invariant functions. They provide versatile tools enabling the analysis of all types of symmetries. The Report concisely presents important results of the theory of symmetry, such as: the ornament principle – expressing the most straightforwardly the innermost property of complex symmetrical objects, the representation theorem for symmetric objects, the theorem on the symmetry of causes and effects of physical laws, the theorem on invariant extension of any function.
Źródło:
Engineering Transactions; 2023, 71, 2; 265-283
0867-888X
Pojawia się w:
Engineering Transactions
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies