Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "naprawialny" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Reliability analysis of machining center based on the field data
Analiza niezawodnościowa centrum obróbkowego w oparciu o dane terenowe
Autorzy:
Yang, Z. J.
Chen, Ch. H.
Chen, F.
Hao, Q. B.
Xu, B. B.
Powiązania:
https://bibliotekanauki.pl/articles/302160.pdf
Data publikacji:
2013
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
analiza uszkodzeń
centrum obróbkowe
polityka utrzymania ruchu
proces spełniający prawo potęgowe
system naprawialny
failure analysis
machining center
maintenance policy
power-law process
repairable system
Opis:
Machining center is the complex machinery, with high level automation and complicated structures, so there are lots of failures. When a random failure occurs, the failed machining center stops and causes a production line or even the whole workshop to stop functioning. The frequent failure leads to the low levels of reliability and production rate. In order to help users and manufacturers optimize maintenance policy to improve the reliability for machining center, this paper presents descriptive statistics of the failure data and develops the failure trend using power-law process, simultaneously establishes the routine inspection and regular inspection as well as the sequential preventive maintenance under maintenance cost constraints. The proposed model could be a useful tool to assess the current conditions, predict reliability and optimize the machining center maintenance policy.
Centrum obróbkowe to skomplikowany mechanizm o wysokim poziomie automatyzacji oraz złożonej konstrukcji, w związku z czym ulega licznym uszkodzeniom. Przy wystąpieniu przypadkowej awarii, uszkodzone centrum obróbkowe przestaje działać i powoduje zatrzymanie linii produkcyjnej a nawet całego oddziału produkcyjnego. Częste awarie obniżają poziom niezawodności oraz tempo produkcji. Aby pomóc użytkownikom i producentom zoptymalizować politykę utrzymania ruchu w celu poprawy niezawodności centrów obróbkowych, w niniejszym artykule przedstawiono statystyki opisowe dotyczące danych o uszkodzeniach i opracowano trend uszkodzeń w oparciu o proces spełniający prawo potęgowe. Jednocześnie ustalono zasady rutynowej inspekcji i okresowych przeglądów, jak również sekwencyjnej obsługi zapobiegawczej przy ograniczonych wydatkach na utrzymanie ruchu. Proponowany model może być użytecznym narzędziem dla potrzeb oceny aktualnych warunków oraz przewidywania niezawodności w celu optymalizacji polityki utrzymania ruchu centrum obróbkowego.
Źródło:
Eksploatacja i Niezawodność; 2013, 15, 2; 147-155
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Balancing reliability and maintenance cost rate of multi-state components with fault interval omission
Równoważenie wskaźników niezawodności i kosztów utrzymania elementów wielostanowych z pominięciem przedziału wystąpienia uszkodzenia
Autorzy:
Dong, Wenjie
Liu, Sifeng
Yang, Xiaoyu
Wang, Huan
Fang, Zhigeng
Powiązania:
https://bibliotekanauki.pl/articles/301323.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
multi-state systems (MSSs)
fault effect omission
stochastic process
repairable model
maintenance cost rate
systemy wielostanowe (MSS)
pominięcie wpływu uszkodzenia
proces stochastyczny
model naprawialny
polityka utrzymania ruchu
Opis:
For the repairable multi-state component, reliability indexes are analyzed based on a homogenous Continuous Time Markov Chain (CTMC). If the component can work well when its repair time is sufficiently short, a threshold value for maintenance is introduced. When the fault interval is less than threshold time, the fault effect is considered neglected. In this paper, comparisons of availability show differences of the new model and the original model with or without fault interval omission. In addition, balancing the maintenance cost and lifetime of multi-state components is an important issue when threshold values are considered. Both constants and non-negative random variables are modeled respectively. Finally, numerical examples are presented to illustrate the results obtained in this paper.
W przypadku naprawialnych elementów wielostanowych, wskaźniki niezawodności analizuje się w oparciu o łańcuch Markowa z czasem ciągłym. Jeśli element może działać prawidłowo, mimo uszkodzenia, dzięki wystarczająco krótkiemu czasowi naprawy, wprowadza się próg czasowy dla konserwacji. Gdy przedział czasu, w którym następuje uszkodzenie jest krótszy niż próg czasowy dla działań konserwacyjnych, wpływ uszkodzenia uważa się za nieistotny. Przeprowadzone w niniejszym artykule porównania gotowości wykazały różnice między nowym modelem a modelem oryginalnym z pominięciem lub bez pominięcia przedziału wystąpienia uszkodzenia. Ponadto, przy rozważaniu wartości progowych, ważną kwestią jest równoważenie kosztów utrzymania i żywotności elementów wielostanowych. W pracy próg wystąpienia uszkodzenia zamodelowano, odpowiednio, zarówno jako wartość stałą jak i nieujemną zmienną losową. Na koniec przedstawiono przykłady ilustrujące wyniki przedstawionych badań.
Źródło:
Eksploatacja i Niezawodność; 2019, 21, 1; 37-45
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Reliability assessment of repairable phased-mission system by monte carlo simulation based on modular sequence-enforcing fault tree model
Ocena niezawodności naprawialnego systemu z misjami okresowymi za pomocą symulacji Monte Carlo w oparciu o modułowy model drzewa niezdatności z bramkami SEQ
Autorzy:
Liu, Chenxi
Kramer, Achim
Neumann, Stephan
Powiązania:
https://bibliotekanauki.pl/articles/301101.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
repairable
phased-mission system
modular reliability modeling
improved linear algebra representation
Monte Carlo simulation
naprawialny
system z misjami okresowymi
modułowe modelowanie niezawodności
udoskonalona reprezentacja algebry liniowej
symulacja Monte Carlo
Opis:
Phased-mission system (PMS) is the system subject to multiple, consecutive and non-overlapping tasks. Much more complicated problems will be confronted when the PMS is repairable since the repairable system could perform the multi-phases mission with more diversity requirements. Besides, various maintenance strategies will directly influence the reliability analysis procedure. Most researches investigate those repairable PMSs that carry out the multi-phases mission with deterministic phase durations, and the mission fails once the system switches from up to down. In this case, one common maintenance strategy is that failed components are repairable as long as the system keeps in up state. However, many practical systems (e.g., construction machinery, agricultural machinery) may be involved in such multi-phases mission, which has uncertain phase durations but limited by a maximum mission time, within which failed components can be unconditional repaired, and the system can be restored from down state. Comparing with the former type of repairable PMS, the latter will also concern phase durations dependence, and both the system and components included have the state bidirectional transition. This paper makes new contributions to the reliability assessment of repairable PMSs by proposing a novel SEFT-MC method. Two types of repairable PMS mentioned above are considered. In our method, a specific sequence-enforcing fault tree (SEFT) is proposed to correctly depict failure logical relationships between the system and components included. In order to transfer the graphical fault tree (no matter its size and complexity) into a modular reliability model used in Monte Carlo (MC) simulation, an improved linear algebra representation (I-LAR) approach is introduced. Finally, a numerical example including two cases corresponding to the two types of repairable PMS is presented to validate the proposed method.
System z misjami okresowymi (phased-mission system, PMS) to system, który wykonuje wiele następujących po sobie i nienakładających się na siebie zadań. W przypadku naprawialnych systemów PMS, analiza niezawodności jest o wiele bardziej skomplikowana, ponieważ system naprawialny może wykonywać misje wielofazowe o bardziej różnorodnych wymaganiach. Poza tym systemy takie wymagają zastosowania różnych strategii utrzymania ruchu, co ma bezpośredni wpływ na procedurę analizy niezawodności. Większość badaczy bada naprawialne systemy PMS, które wykonują misje wielofazowe, w których czas trwania fazy jest wielkością deterministyczną, a misja kończy się niepowodzeniem, gdy system przechodzi ze stanu zdatności do stanu niezdatności W takich przypadkach najczęściej przyjmuje się, że uszkodzone elementy można naprawić o ile system pozostaje w stanie zdatności. Jednak wiele systemów stosowanych w praktyce (t.j. maszyny budowlane czy maszyny rolnicze) może wykonywać misje wielofazowe, w których czas trwania fazy jest wielkością niepewną, ograniczoną jedynie przez maksymalny czas trwania misji, w którym to czasie uszkodzone komponenty mogą być bezwarunkowo naprawiane, dzięki czemu system może zostać przywrócony do stanu zdatności. W porównaniu z pierwszym rodzajem naprawialnego PMS, w drugim, czasy trwania faz są zależne od siebie. Ponadto, w systemie tego typu, zarówno poszczególne elementy, jak i cały system mogą przechodzić ze stanu zdatności do stanu niezdatności i odwrotnie. Niniejsza praca wnosi nowy wkład w ocenę niezawodności naprawialnych systemów PMS, proponując nowatorską metodę, która polega na wykorzystaniu dynamicznego drzewa niezdatności do przeprowadzenia symulacji Monte Carlo (SEFTMC). Rozważane są dwa wymienione powyżej typy naprawialnego PMS. W naszej metodzie zaproponowano drzewo niezdatności z bramkami SEQ (SEFT), które pozwala poprawnie zobrazować logiczne zależności między systemem a jego komponentami w zakresie uszkodzeń. Do przeniesienia graficznego drzewa niezdatności (bez względu na jego rozmiar i złożoność) do modułowego modelu niezawodności wykorzystywanego w symulacji Monte Carlo, zastosowano udoskonaloną metodę reprezentacji algebry liniowej (I-LAR). Poprawność proponowanej metody wykazano na przykładzie numerycznym obejmującym dwa przypadki odpowiadające dwóm omawianym typom naprawialnego PMS
Źródło:
Eksploatacja i Niezawodność; 2020, 22, 2; 272-281
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies