Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Zarinchang, A." wg kryterium: Autor


Wyświetlanie 1-1 z 1
Tytuł:
Zastosowanie algorytmu genetycznego do rozwiązywania zadań niezawodnościowych dotyczących wielokryterialnych systemów szeregowo-równoległych
An application of genetic algorithm toward solving the reliability problem of multiobjective series-parallel systems
Autorzy:
Zarinchang, A.
Faghih, N.
Zarinchang, J.
Powiązania:
https://bibliotekanauki.pl/articles/301672.pdf
Data publikacji:
2012
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
algorytm genetyczny
optymalizacja wielokryterialna
optymalizacja niezawodności
podział nadmiarowości
systemy szeregowo-równoległe
metoda TOPSIS
multiobjective genetic algorithm
reliability optimization
redundancy apportionment
series-parallel systems
TOPSIS method
Opis:
Ponieważ znalezienie odpowiedniego rozwiązania zadania optymalizacji niezawodnościowej przy wykorzystaniu metod programowania matematycznego uznaje się za trudne, coraz częściej stosuje się do tego celu metody heurystyczne. Algorytm genetyczny do optymalizacji wielokryterialnej (Multiobjective Genetic Algorithm, MGA) jest jedną z metod heurystycznych, stworzoną w celu znajdowania rozwiązań dla systemów szeregowo-równoległych, pozwalającą na uzyskanie maksymalnej niezawodności oraz minimalnych kosztów i ciężaru na poziomie systemu. Zadania takie występują powszechnie w dziedzinie projektowania i konstrukcji systemów mechanicznych i elektrycznych. Wykazano, że MGA pozwala uzyskać odpowiednie rozwiązania tego typu zadań uwzględniając przy tym funkcje celu, takie jak niezawodność, koszty i ciężar. W niniejszej pracy przedstawiono połączenie metody wyszukiwania probabilistycznego oraz jednej z metod rozwiązywania problemów decyzyjnych o nazwie TOPSIS (Technique for Order Preference by Similarity to Ideal Solution). MGA pozwala uzyskać odpowiednie rozwiązania konstrukcyjne dając przy tym znaczną oszczędność czasu w porównaniu z niektórymi innymi metodami. Jednocześnie potraktowanie kosztów i ciężaru jako funkcji celu daje lepsze wyniki w porównaniu do metody wykorzystującej algorytm genetyczny, w której koszty i ciężar rozpatrywane są jako ograniczenia.
Since developing an appropriate solution for reliability optimization problem with mathematical programming methods has been considered as difficult techniques, the heuristic approaches increasingly has been applied. Multiobjectve Genetic Algorithm (MGA) has been among heuristic methods that was developed to find solutions for series-parallel systems to obtain maximum reliability, and minimum cost and weight at the system level. These are very common problems in engineering design such as mechanical and electrical systems. It has been shown that the Multiobjectve Genetic Algorithm offers proper results to these problems while it respects to the several objective functions such as reliability, cost and weight. This paper presents the combination of probabilistic search, and one of the decision making methods called Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). The Multiobjectve Genetic Algorithm, allows us to achieve a proper design solution while it saves a considerable time compared with some other approaches. At the same time as the reliability, cost and weight were chosen as objective functions, the results obtained by this method showed an overall improvement in comparison to the existing GA method considering cost and weight as constraints.
Źródło:
Eksploatacja i Niezawodność; 2012, 14, 3; 243-248
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies