Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Li, J. B." wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Preventive maintenance strategy optimizing model under two-dimensional warranty policy
Model optymalizacji strategii konserwacji zapobiegawczej w warunkach dwuwymiarowej polityki gwarancyjnej
Autorzy:
Cheng, Z. H.
Yang, Z. Y.
Zhao, J. M.
Wang, Y. B.
Li, Z. W.
Powiązania:
https://bibliotekanauki.pl/articles/302023.pdf
Data publikacji:
2015
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
two-dimensional warranty
imperfect preventive maintenance
availability
gwarancja dwuwymiarowa
niepełna konserwacja zapobiegawcza
dyspozycyjność
Opis:
An effective warranty servicing strategy should be made considering both warranty cost and product availability. Based on the two-dimensional free repair warranty, a strategy combining the imperfect preventive maintenance and minimal repair is proposed where the imperfect preventive maintenances are implemented in a special subregion of the warranty and all other failures are repaired minimally. By modeling the warranty cost and product availability, we derive the optimum warranty servicing strategy and corresponding parameters to minimize the cost-effective of unit time. Finally, we provide a numerical illustration and a comparison with some other strategies.
Efektywna strategia obsługi gwarancyjnej powinna uwzględniać zarówno koszty gwarancji jak i dyspozycyjność produktu. W oparciu o pojęcie dwuwymiarowej gwarancji bezpłatnej naprawy, zaproponowano strategię łączącą niepełną konserwację zapobiegawczą z naprawą minimalną, gdzie działania obsługowe w ramach niepełnej konserwacji zapobiegawczej przeprowadza się w ramach specjalnego podobszaru gwarancji, a wszelkie inne uszkodzenia naprawia się w ramach naprawy minimalnej. Modelując koszty naprawy oraz dyspozycyjność produktu, wyprowadzono optymalną strategię obsługi gwarancyjnej oraz odpowiadające jej parametry w celu zminimalizowania kosztów na jednostkę czasu. Na koniec, proponowane rozwiązanie zilustrowano na przykładzie numerycznym oraz porównano z innymi strategiami
Źródło:
Eksploatacja i Niezawodność; 2015, 17, 3; 365-373
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Weighted prediction method with multiple time series using multi-kernel least squares support vector regression
Metoda ważonej predykcji wielokrotnych szeregów czasowych z wykorzystaniem wielojądrowej regresji wektorów wspierających metodą najmniejszych kwadratów (LS-SVR)
Autorzy:
Guo, Y. M.
Ran, C. B.
Li, X. L.
Ma, J. Z.
Zhang, L.
Powiązania:
https://bibliotekanauki.pl/articles/302067.pdf
Data publikacji:
2013
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
szereg czasowy
predykcja ważona
regresja wektorów wspierających metodą najmniejszych kwadratów (LS-SVR)
uczenie wielojądrowe (MKL)
time series
weighted prediction
least squares support vector regression (LS-SVR)
multiple kernel learning (MKL)
Opis:
Least squares support vector regression (LS-SVR) has been widely applied in time series prediction. Based on the case that one fault mode may be represented by multiple relevant time series, we utilize multiple time series to enrich the prediction information hiding in time series data, and use multi-kernel to fully map the information into high dimensional feature space, then a weighted time series prediction method with multi-kernel LS-SVR is proposed to attain better prediction performance in this paper. The main contributions of this method include three parts. Firstly, a simple approach is proposed to determine the combining weights of multiple basis kernels; Secondly, the internal correlative levels of multiple relevant time series are computed to present the different contributions of prediction results; Thirdly, we propose a new weight function to describe each data's different effect on the prediction accuracy. The experiment results indicate the effectiveness of the proposed method in both better prediction accuracy and less computation time. It maybe has more application value.
Regresja wektorów wspierających metodą najmniejszych kwadratów (LS-SVR) jest szeroko stosowana w predykcji szeregów czasowych. Opierając się na fakcie, że jeden rodzaj niezdatności może być reprezentowany przez wiele relewantnych szeregów czasowych, w niniejszej pracy wykorzystano wielokrotne szeregi czasowe do wzbogacenia informacji predykcyjnych ukrytych w szeregach czasowych oraz posłużono się metodą uczenia wielojądrowego (multi-kernel) w celu mapowania informacji do wysoko wymiarowej przestrzeni cech, a następnie zaproponowano metodę ważonej predykcji wielokrotnych szeregów czasowych z wykorzystaniem wielojądrowej regresji LS-SVR służącą osiągnięciu lepszej wydajności prognozowania.Metoda składa się z trzech głównych części. Po pierwsze, zaproponowano prosty sposób określania łącznej wagi wielu jąder podstawowych. Po drugie, obliczono wewnętrzne poziomy korelacyjne wielokrotnych szeregów czasowych w celu przedstawienia różnego udziału wyników prognozowania. Po trzecie, zaproponowano nową funkcję wagi do opisu różnego wpływu poszczególnych danych na trafność predykcji. Wyniki doświadczenia wskazują na skuteczność proponowanej metody zarówno jeśli chodzi o lepszą trafność predykcji jak i krótszy czas obliczeniowy. Proponowane rozwiązanie ma potencjalnie dużą wartość aplikacyjną.
Źródło:
Eksploatacja i Niezawodność; 2013, 15, 2; 188-194
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies