Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Zhang, Ze" wg kryterium: Wszystkie pola


Wyświetlanie 1-2 z 2
Tytuł:
Real-time equipment condition assessment for a class-imbalanced dataset based on heterogeneous ensemble learning
Ocena stanu sprzętu w czasie rzeczywistym dla zbiorów danych o niezrównoważonym rozkładzie w klasach. Metoda oparta na uczeniu zespołowym
Autorzy:
Chen, Xiaohui
Zhang, Zhiyao
Zhang, Ze
Powiązania:
https://bibliotekanauki.pl/articles/300613.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
condition assessment
heterogeneous ensemble learning
genetic algorithm
class-imbalanced
ocena stanu
uczenie zespołowe
algorytm genetyczny
niezrównoważony rozkład w klasach
Opis:
This study proposes an ensemble learning model for the purpose of performing a real-time equipment condition assessment. This model makes it possible to plan desired preventive maintenance activities before an unexpected failure takes place. This study focuses on the class-imbalanced problem in equipment condition assessment research. In reality, equipment will experience multiple conditions(states), most of the time remaining in the normal condition and relatively rarely being in the critical condition, which means that, from the perspective of data modelling, the distribution of samples is highly imbalanced among different classes(conditions). The majority of samples belong to the normal condition, while the minority belong to the critical condition, which poses a great challenge to the classification performance. To address this problem, a genetic algorithm-based ensemble learning model is presented. Furthermore, a self-updating learning strategy is presented for online monitoring, contributing to adaptability and reliability enhancement along with time. Many previous studies have attempted feature extraction and to set thresholds for equipment health indicators. This study has an advantage of omitting these steps, as it can directly assess the equipment condition through the proposed ensemble learning model. Numerical experiments, including two types of comparison studies, have been conducted. The results show the greater effectiveness of our proposed model over that of previous research in terms of the stability and accuracy of its classification performance.
W pracy przedstawiono model uczenia maszynowego opartego na zespołach niejednorodnych klasyfikatorów (ensemble learning), który pozwala przeprowadzać ocenę stanu sprzętu w czasie rzeczywistym. Model ten umożliwia zaplanowanie niezbędnych czynności konserwacji profilaktycznej przed wystąpieniem niespodziewanego uszkodzenia. Tematem pracy jest zagadnienie niezrównoważonego rozkładu w klasach poruszane w badaniach dotyczących oceny stanu sprzętu. W warunkach rzeczywistych, sprzęt chrakteryzuje wiele różnych stanów, przy czym przez większość czasu pozostaje on w stanie normalnym, a relatywnie rzadko znajduje się w stanie krytycznym, co oznacza, że z punktu widzenia modelowania danych, rozkład prób w poszczególnych klasach (stanach) jest wysoce niezrównoważony. Większość prób należy do stanu normalnego, a mniejszość do stanu krytycznego, co stanowi duże wyzwanie jeśli chodzi o wydajność klasyfikacji. W celu rozwiązania tego problemu, przedstawiono model uczenia zespołowego oparty na algorytmie genetycznym. Ponadto zaprezentowano samoaktualizującą się strategię uczenia wykorzystywaną do monitorowania online, która wraz z upływem czasu zwiększa adaptacyjność i niezawodność modelu . W wielu poprzednich badaniach podejmowano próby ekstrakcji cech oraz ustalania progów dla wskaźników stanu sprzętu. Zaletą przedstawionej metody jest to, że pozwala ona pominąć te etapy i bezpośrednio oceniać stan sprzętu za pomocą proponowanego modelu uczenia zespołowego. Przeprowadzono eksperymenty numeryczne, w tym dwa rodzaje badań porównawczych. Wyniki pokazują większą skuteczność proponowanego modelu w stosunku do poprzednich badań pod względem stabilności i trafności klasyfikacji.
Źródło:
Eksploatacja i Niezawodność; 2019, 21, 1; 68-80
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Solid lubricated bearings performance degradation assessment: A fuzzy self-organizing map method
Ocena obniżenia charakterystyk łożysk ze smarem stałym: metoda rozmytych samoorganizujących się map
Autorzy:
Zhang, Ch.
Wang, S.
Powiązania:
https://bibliotekanauki.pl/articles/301012.pdf
Data publikacji:
2013
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
solid lubricated bearings
performance degradation
fuzzy self-organizing map
łożyska ze smarem stałym
obniżenie charakterystyk
rozmyta mapa samoorganizująca się
Opis:
Solid lubricated bearings are common components in space mechanisms, and their reliability and performance degradation assessment are very crucial. In this study, a fuzzy self-organizing map method is used to perform performance degradation assessment. Feature vectors are constructed by indices of vibration as well as friction torque signal. Self-organizing map is then used to perform performance degradation assessment and the subjection of each feature vector to normal cluster on output layer is used as degradation indicator. Accelerated life test results show that this method can make effective performance degradation assessment and describe degradation degree in the whole life time.
Łożyska ze smarem stałym to powszechnie stosowane elementy urządzeń, a ich niezawodność i ocena degradacji charakterystyk są bardzo istotne. W przedstawionej pracy wykorzystano metodę rozmytych samoorganizujących się map do oceny obniżenia charakterystyk. Wektory cech skonstruowano za pomocą wskaźników wibracji, jak również sygnału momentu tarcia. Następnie dokonano oceny obniżenia charakterystyk z wykorzystaniem samoorganizującej się mapy, a za wskaźnik degradacji przyjęto przynależność każdego wektora cech do normalnej grupy w warstwie wyjściowej. Wyniki badań przyspieszonych pokazują, że przy użyciu omawianej metody można dokonywać skutecznej oceny obniżenia charakterystyk a także opisywać stopień degradacji w całym okresie eksploatacji.
Źródło:
Eksploatacja i Niezawodność; 2013, 15, 4; 397-402
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies