Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Long, Yi" wg kryterium: Wszystkie pola


Wyświetlanie 1-2 z 2
Tytuł:
Interval Prediction of Remaining Useful Life based on Convolutional Auto-Encode and Lower Upper Bound Estimation
Autorzy:
Lyu, Yi
Zhang, Qichen
Chen, Aiguo
Wen, Zhenfei
Powiązania:
https://bibliotekanauki.pl/articles/24200839.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
remaining useful life
lower upper bound estimation
Long Short-Term Memory
prediction interval
Opis:
Deep learning is widely used in remaining useful life (RUL) prediction because it does not require prior knowledge and has strong nonlinear fitting ability. However, most of the existing prediction methods are point prediction. In practical engineering applications, confidence interval of RUL prediction is more important for maintenance strategies. This paper proposes an interval prediction model based on Long Short-Term Memory (LSTM) and lower upper bound estimation (LUBE) for RUL prediction. First, convolutional auto-encode network is used to encode the multi-dimensional sensor data into one-dimensional features, which can well represent the main degradation trend. Then, the features are input into the prediction framework composed of LSTM and LUBE for RUL interval prediction, which effectively solves the defect that the traditional LUBE network cannot analyze the internal time dependence of time series. In the experiment section, a case study is conducted using the turbofan engine data set CMAPSS, and the advantage is validated by carrying out a comparison with other methods.
Źródło:
Eksploatacja i Niezawodność; 2023, 25, 2; art. no. 165811
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A mechanism reliability analysis method considering environmental influence and failure modes’ correlation : a case study of rifle automaton
Autorzy:
Fang, Yi-chuan
Wang, Yong-juan
Sha, Jin-long
Gu, Tong-guang
Zhang, He
Powiązania:
https://bibliotekanauki.pl/articles/24200826.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
mechanism reliability
environmental influence
failure modes’ correlation
copula function
Kaplan-Meier estimation
rifle automaton
Opis:
In order to overcome the challenge of quantifying the influence of environmental conditions and the coexistence of multiple failure modes involved in mechanism reliability modelling under different environments. In this paper, we propose a method for the analysis of mechanism reliability that takes into account the influence of environmental factors and failure modes’ correlation, quantifies the influence of environmental factors as the random distribution and degradation path of parameters, and derives the Copula description of failure mode correlation from the historical data of environmental experiments. On the basis of the discrete mechanism dynamics model, the output parameters of the characteristic points are calculated, and the failure rate of each failure mode is calculated based on the failure criterion and the performance margin theory. Additionally, the dynamic change pattern of the mechanism reliability is compared with the Kaplan-Meier estimation of the corresponding environmental test history data to assess the validity of the calculation results. The reliability modelling problem of a motion mechanism of an automatic rifle automaton in a high and low temperature environment is applied to the method, and the reliability calculation results are close to those of Kaplan-Meier estimation of the test history data, and all are within the upper and lower bounds given by the reliability boundary theory, demonstrating the method's validity.
Źródło:
Eksploatacja i Niezawodność; 2023, 25, 2; art. no. 166145
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies