- Tytuł:
- Bounds on the Double Italian Domination Number of a Graph
- Autorzy:
-
Azvin, Farzaneh
Rad, Nader Jafari - Powiązania:
- https://bibliotekanauki.pl/articles/32222552.pdf
- Data publikacji:
- 2022-11-01
- Wydawca:
- Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
- Tematy:
-
Italian domination
double Italian domination
probabilistic methods - Opis:
- For a graph G, a Roman {3}-dominating function is a function f : V → {0, 1, 2, 3} having the property that for every vertex u ∈ V, if f(u) ∈ {0, 1}, then f(N[u]) ≥ 3. The weight of a Roman {3}-dominating function is the sum w(f) = f(V) = Σv∈V f(v), and the minimum weight of a Roman {3}-dominating function is the Roman {3}-domination number, denoted by γ{R3}(G). In this paper, we present a sharp lower bound for the double Italian domination number of a graph, and improve previous bounds given in [D.A. Mojdeh and L. Volkmann, Roman {3}-domination (double Italian domination), Discrete Appl. Math. 283 (2022) 555–564]. We also present a probabilistic upper bound for a generalized version of double Italian domination number of a graph, and show that the given bound is asymptotically best possible.
- Źródło:
-
Discussiones Mathematicae Graph Theory; 2022, 42, 4; 1129-1137
2083-5892 - Pojawia się w:
- Discussiones Mathematicae Graph Theory
- Dostawca treści:
- Biblioteka Nauki