Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "hereditary classes" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
On a perfect problem
Autorzy:
Zverovich, Igor
Powiązania:
https://bibliotekanauki.pl/articles/743945.pdf
Data publikacji:
2006
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
hereditary classes
perfect graphs
Opis:
We solve Open Problem (xvi) from Perfect Problems of Chvátal [1] available at ftp://dimacs.rutgers.edu/pub/perfect/problems.tex: Is there a class C of perfect graphs such that (a) C does not include all perfect graphs and (b) every perfect graph contains a vertex whose neighbors induce a subgraph that belongs to C? A class P is called locally reducible if there exists a proper subclass C of P such that every graph in P contains a local subgraph belonging to C. We characterize locally reducible hereditary classes. It implies that there are infinitely many solutions to Open Problem (xvi). However, it is impossible to find a hereditary class C of perfect graphs satisfying both (a) and (b).
Źródło:
Discussiones Mathematicae Graph Theory; 2006, 26, 2; 273-277
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Sum-List Colouring of Unions of a Hypercycle and a Path with at Most Two Vertices in Common
Autorzy:
Drgas-Burchardt, Ewa
Sidorowicz, Elżbieta
Powiązania:
https://bibliotekanauki.pl/articles/31527293.pdf
Data publikacji:
2020-08-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
hypergraphs
sum-list colouring
induced hereditary classes
forbidden hypergraphs
Opis:
Given a hypergraph \(\mathcal{H}\) and a function \(f : V (\mathcal{H}) → ℕ\), we say that \(\mathcal{H}\) is $f$-choosable if there is a proper vertex colouring $ϕ$ of \(\mathcal{H}\) such that $ϕ (v) ∈ L(v)$ for all \(v ∈ V (\mathcal{H})\), where \(L : V (\mathcal{H}) → 2^ℕ\) is any assignment of $f(v)$ colours to a vertex $v$. The sum choice number \(\mathcal{H}i_{sc}(\mathcal{H})\) of \(\mathcal{H}\) is defined to be the minimum of \(Σ_{v∈V(\mathcal{H})}f(v)\) over all functions $f$ such that \(\mathcal{H}\) is $f$-choosable. For an arbitrary hypergraph \(\mathcal{H}\) the inequality \(χ_{sc}(\mathcal{H}) ≤ |V (\mathcal{H})| + |ɛ (\mathcal{H})|\) holds, and hypergraphs that attain this upper bound are called $sc$-greedy. In this paper we characterize $sc$-greedy hypergraphs that are unions of a hypercycle and a hyperpath having at most two vertices in common. Consequently, we characterize the hypergraphs of this type that are forbidden for the class of $sc$-greedy hypergraphs.
Źródło:
Discussiones Mathematicae Graph Theory; 2020, 40, 3; 893-917
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
\( \mathcal{P} \)-Apex Graphs
Autorzy:
Borowiecki, Mieczysław
Drgas-Burchardt, Ewa
Sidorowicz, Elżbieta
Powiązania:
https://bibliotekanauki.pl/articles/31342421.pdf
Data publikacji:
2018-05-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
induced hereditary classes of graphs
forbidden subgraphs
hypergraphs
transversal number
Opis:
Let \( \mathcal{P} \) be an arbitrary class of graphs that is closed under taking induced subgraphs and let \( \mathcal{C}( \mathcal{P} ) \) be the family of forbidden subgraphs for \( \mathcal{P} \). We investigate the class \( \mathcal{P} (k) \) consisting of all the graphs \( G \) for which the removal of no more than \( k \) vertices results in graphs that belong to \( \mathcal{P} \). This approach provides an analogy to apex graphs and apex-outerplanar graphs studied previously. We give a sharp upper bound on the number of vertices of graphs in \( \mathcal{C}( \mathcal{P}(1)) \) and we give a construction of graphs in \( \mathcal{C}( \mathcal{P}(k)) \) of relatively large order for \( k \ge 2 \). This construction implies a lower bound on the maximum order of graphs in \( \mathcal{C}( \mathcal{P}(k)) \). Especially, we investigate \( \mathcal{C}( \mathcal{W}_r(1)) \), where \( \mathcal{W}_r \) denotes the class of \( \mathcal{P}_r \)-free graphs. We determine some forbidden subgraphs for the class \( \mathcal{W}_r(1) \) with the minimum and maximum number of vertices. Moreover, we give sufficient conditions for graphs belonging to \( \mathcal{C} ( \mathcal{P} (k)) \), where \( \mathcal{P} \) is an additive class, and a characterisation of all forests in \( \mathcal{C} ( \mathcal{P} (k)) \). Particularly we deal with \( \mathcal{C} ( \mathcal{P} (1)) \), where \( \mathcal{P} \) is a class closed under substitution and obtain a characterisation of all graphs in the corresponding \( \mathcal{C} ( \mathcal{P} (1)) \). In order to obtain desired results we exploit some hypergraph tools and this technique gives a new result in the hypergraph theory.
Źródło:
Discussiones Mathematicae Graph Theory; 2018, 38, 2; 323-349
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Unique factorisation of additive induced-hereditary properties
Autorzy:
Farrugia, Alastair
Richter, R.
Powiązania:
https://bibliotekanauki.pl/articles/744519.pdf
Data publikacji:
2004
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
additive and hereditary graph classes
unique factorization
Opis:
An additive hereditary graph property is a set of graphs, closed under isomorphism and under taking subgraphs and disjoint unions. Let ₁,...,ₙ be additive hereditary graph properties. A graph G has property (₁∘...∘ₙ) if there is a partition (V₁,...,Vₙ) of V(G) into n sets such that, for all i, the induced subgraph $G[V_i]$ is in $_i$. A property is reducible if there are properties , such that = ∘ ; otherwise it is irreducible. Mihók, Semanišin and Vasky [8] gave a factorisation for any additive hereditary property into a given number dc() of irreducible additive hereditary factors. Mihók [7] gave a similar factorisation for properties that are additive and induced-hereditary (closed under taking induced-subgraphs and disjoint unions). Their results left open the possiblity of different factorisations, maybe even with a different number of factors; we prove here that the given factorisations are, in fact, unique.
Źródło:
Discussiones Mathematicae Graph Theory; 2004, 24, 2; 319-343
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies