- Tytuł:
- The General Position Problem on Kneser Graphs and on Some Graph Operations
- Autorzy:
-
Ghorbani, Modjtaba
Maimani, Hamid Reza
Momeni, Mostafa
Mahid, Farhad Rahimi
Klavžar, Sandi
Rus, Gregor - Powiązania:
- https://bibliotekanauki.pl/articles/32222714.pdf
- Data publikacji:
- 2021-11-01
- Wydawca:
- Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
- Tematy:
-
general position set
Kneser graphs
Cartesian product of graphs
corona over graphs
line graphs - Opis:
- A vertex subset S of a graph G is a general position set of G if no vertex of S lies on a geodesic between two other vertices of S. The cardinality of a largest general position set of G is the general position number (gp-number) gp(G) of G. The gp-number is determined for some families of Kneser graphs, in particular for K(n, 2), n ≥ 4, and K(n, 3), n ≥ 9. A sharp lower bound on the gp-number is proved for Cartesian products of graphs. The gp-number is also determined for joins of graphs, coronas over graphs, and line graphs of complete graphs.
- Źródło:
-
Discussiones Mathematicae Graph Theory; 2021, 41, 4; 1199-1213
2083-5892 - Pojawia się w:
- Discussiones Mathematicae Graph Theory
- Dostawca treści:
- Biblioteka Nauki