Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "cycles number" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
A Classification of Cactus Graphs According to their Domination Number
Autorzy:
Hajian, Majid
Henning, Michael A.
Rad, Nader Jafari
Powiązania:
https://bibliotekanauki.pl/articles/32315639.pdf
Data publikacji:
2022-05-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
domination number
lower bounds
cycles
cactus graphs
Opis:
A set S of vertices in a graph G is a dominating set of G if every vertex not in S is adjacent to some vertex in S. The domination number, γ(G), of G is the minimum cardinality of a dominating set of G. The authors proved in [A new lower bound on the domination number of a graph, J. Comb. Optim. 38 (2019) 721–738] that if G is a connected graph of order n ≥ 2 with k ≥ 0 cycles and ℓ leaves, then γ(G) ≥ ⌈(n − ℓ + 2 − 2k)/3⌉. As a consequence of the above bound, γ(G) = (n − ℓ + 2(1 − k) + m)/3 for some integer m ≥ 0. In this paper, we characterize the class of cactus graphs achieving equality here, thereby providing a classification of all cactus graphs according to their domination number.
Źródło:
Discussiones Mathematicae Graph Theory; 2022, 42, 2; 613-626
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Chvátal-Erdos condition and pancyclism
Autorzy:
Flandrin, Evelyne
Li, Hao
Marczyk, Antoni
Schiermeyer, Ingo
Woźniak, Mariusz
Powiązania:
https://bibliotekanauki.pl/articles/743987.pdf
Data publikacji:
2006
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
hamiltonian graphs
pancyclic graphs
cycles
connectivity
stability number
Opis:
The well-known Chvátal-Erdős theorem states that if the stability number α of a graph G is not greater than its connectivity then G is hamiltonian. In 1974 Erdős showed that if, additionally, the order of the graph is sufficiently large with respect to α, then G is pancyclic. His proof is based on the properties of cycle-complete graph Ramsey numbers. In this paper we show that a similar result can be easily proved by applying only classical Ramsey numbers.
Źródło:
Discussiones Mathematicae Graph Theory; 2006, 26, 2; 335-342
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Domination Game Critical Graphs
Autorzy:
Bujtás, Csilla
Klavžar, Sandi
Košmrlj, Gašper
Powiązania:
https://bibliotekanauki.pl/articles/31234048.pdf
Data publikacji:
2015-11-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
domination number
domination game
domination game critical graphs
powers of cycles
trees
Opis:
The domination game is played on a graph $G$ by two players who alternately take turns by choosing a vertex such that in each turn at least one previously undominated vertex is dominated. The game is over when each vertex becomes dominated. One of the players, namely Dominator, wants to finish the game as soon as possible, while the other one wants to delay the end. The number of turns when Dominator starts the game on $G$ and both players play optimally is the graph invariant $ \gamma_g (G) $, named the game domination number. Here we study the $ \gamma_g$-critical graphs which are critical with respect to vertex predomination. Besides proving some general properties, we characterize $ \gamma_g$-critical graphs with $ \gamma_g = 2$ and with $ \gamma_g = 3$, moreover for each n we identify the (infinite) class of all $\gamma_g$-critical ones among the $n$th powers $ C_N^n$ of cycles. Along the way we determine $\gamma_{g} ( C_N^n ) $ for all $n$ and $N$. Results of a computer search for $ \gamma_g$-critical trees are presented and several problems and research directions are also listed.
Źródło:
Discussiones Mathematicae Graph Theory; 2015, 35, 4; 781-796
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies