Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Infinite" wg kryterium: Temat


Wyświetlanie 1-6 z 6
Tytuł:
Cycle Double Covers of Infinite Planar Graphs
Autorzy:
Javaheri, Mohammad
Powiązania:
https://bibliotekanauki.pl/articles/31340892.pdf
Data publikacji:
2016-08-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
cycle double cover
infinite planar graph
Opis:
In this paper, we study the existence of cycle double covers for infinite planar graphs. We show that every infinite locally finite bridgeless k-indivisible graph with a 2-basis admits a cycle double cover.
Źródło:
Discussiones Mathematicae Graph Theory; 2016, 36, 3; 523-544
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On the existence of (k,l)-kernels in infinite digraphs: A survey
Autorzy:
Galeana-Sánchez, H.
Hernández-Cruz, C.
Powiązania:
https://bibliotekanauki.pl/articles/30148241.pdf
Data publikacji:
2014-08-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
kernel
k-kernel
infinite digraph
(k, l)-kernel
Opis:
Let D be a digraph, V (D) and A(D) will denote the sets of vertices and arcs of D, respectively. A (k, l)-kernel N of D is a k-independent (if u, v ∈ N, u 6= v, then d(u, v), d(v, u) ≥ k) and l-absorbent (if u ∈ V (D) − N then there exists v ∈ N such that d(u, v) ≤ l) set of vertices. A k-kernel is a (k, k −1)-kernel. This work is a survey of results proving sufficient conditions for the existence of (k, l)-kernels in infinite digraphs. Despite all the previous work in this direction was done for (2, 1)-kernels, we present many original results concerning (k, l)-kernels for distinct values of k and l. The original results are sufficient conditions for the existence of (k, l)- kernels in diverse families of infinite digraphs. Among the families that we study are: transitive digraphs, quasi-transitive digraphs, right/left pretransitive digraphs, cyclically k-partite digraphs, κ-strong digraphs, k-transitive digraphs, k-quasi-transitive digraphs.
Źródło:
Discussiones Mathematicae Graph Theory; 2014, 34, 3; 431-466
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Arithmetically maximal independent sets in infinite graphs
Autorzy:
Bylka, Stanisław
Powiązania:
https://bibliotekanauki.pl/articles/744334.pdf
Data publikacji:
2005
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
infinite graph
independent set
arithmetical maximal set
line graph
Opis:
Families of all sets of independent vertices in graphs are investigated. The problem how to characterize those infinite graphs which have arithmetically maximal independent sets is posed. A positive answer is given to the following classes of infinite graphs: bipartite graphs, line graphs and graphs having locally infinite clique-cover of vertices. Some counter examples are presented.
Źródło:
Discussiones Mathematicae Graph Theory; 2005, 25, 1-2; 167-182
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Constant 2-Labellings And An Application To (R, A, B)-Covering Codes
Autorzy:
Gravier, Sylvain
Vandomme, Èlise
Powiązania:
https://bibliotekanauki.pl/articles/31341603.pdf
Data publikacji:
2017-11-27
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
covering codes
weighted codes
infinite grid
vertex-weighted graphs
Opis:
We introduce the concept of constant 2-labelling of a vertex-weighted graph and show how it can be used to obtain perfect weighted coverings. Roughly speaking, a constant 2-labelling of a vertex-weighted graph is a black and white colouring of its vertex set which preserves the sum of the weights of black vertices under some automorphisms. We study constant 2-labellings on four types of vertex-weighted cycles. Our results on cycles allow us to determine (r, a, b)-codes in $ \mathbb{Z}^2 $ whenever |a − b| > 4, r ≥ 2 and we give the precise values of a and b. This is a refinement of Axenovich’s theorem proved in 2003.
Źródło:
Discussiones Mathematicae Graph Theory; 2017, 37, 4; 891-918
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Distinguishing Cartesian Products of Countable Graphs
Autorzy:
Estaji, Ehsan
Imrich, Wilfried
Kalinowski, Rafał
Pilśniak, Monika
Tucker, Thomas
Powiązania:
https://bibliotekanauki.pl/articles/31342144.pdf
Data publikacji:
2017-02-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
vertex coloring
distinguishing number
automorphisms
infinite graphs
Cartesian and weak Cartesian product
Opis:
The distinguishing number D(G) of a graph G is the minimum number of colors needed to color the vertices of G such that the coloring is preserved only by the trivial automorphism. In this paper we improve results about the distinguishing number of Cartesian products of finite and infinite graphs by removing restrictions to prime or relatively prime factors.
Źródło:
Discussiones Mathematicae Graph Theory; 2017, 37, 1; 155-164
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On dually compact closed classes of graphs and BFS-constructible graphs
Autorzy:
Polat, Norbert
Powiązania:
https://bibliotekanauki.pl/articles/743184.pdf
Data publikacji:
2003
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
infinite graph
dismantlable graph
constructible graph
BFS-cons-tructible graph
variety
weak-retract
strong product
bridged graph
Helly graph
weakly-modular graph
dually compact closed class
Opis:
A class C of graphs is said to be dually compact closed if, for every infinite G ∈ C, each finite subgraph of G is contained in a finite induced subgraph of G which belongs to C. The class of trees and more generally the one of chordal graphs are dually compact closed. One of the main part of this paper is to settle a question of Hahn, Sands, Sauer and Woodrow by showing that the class of bridged graphs is dually compact closed. To prove this result we use the concept of constructible graph. A (finite or infinite) graph G is constructible if there exists a well-ordering ≤ (called constructing ordering) of its vertices such that, for every vertex x which is not the smallest element, there is a vertex y < x which is adjacent to x and to every neighbor z of x with z < x. Finite graphs are constructible if and only if they are dismantlable. The case is different, however, with infinite graphs. A graph G for which every breadth-first search of G produces a particular constructing ordering of its vertices is called a BFS-constructible graph. We show that the class of BFS-constructible graphs is a variety (i.e., it is closed under weak retracts and strong products), that it is a subclass of the class of weakly modular graphs, and that it contains the class of bridged graphs and that of Helly graphs (bridged graphs being very special instances of BFS-constructible graphs). Finally we show that the class of interval-finite pseudo-median graphs (and thus the one of median graphs) and the class of Helly graphs are dually compact closed, and that moreover every finite subgraph of an interval-finite pseudo-median graph (resp. a Helly graph) G is contained in a finite isometric pseudo-median (resp. Helly) subgraph of G. We also give two sufficient conditions so that a bridged graph has a similar property.
Źródło:
Discussiones Mathematicae Graph Theory; 2003, 23, 2; 365-381
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-6 z 6

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies