Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Zavala, B." wg kryterium: Autor


Wyświetlanie 1-3 z 3
Tytuł:
Monochromatic paths and monochromatic sets of arcs in bipartite tournaments
Autorzy:
Galeana-Sánchez, Hortensia
Rojas-Monroy, R.
Zavala, B.
Powiązania:
https://bibliotekanauki.pl/articles/744396.pdf
Data publikacji:
2009
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
m-coloured bipartite tournaments
kernel by monochromatic paths
semikernel of D modulo i by monochromatic paths
Opis:
We call the digraph D an m-coloured digraph if the arcs of D are coloured with m colours and all of them are used. A directed path is called monochromatic if all of its arcs are coloured alike. A set N of vertices of D is called a kernel by monochromatic paths if for every pair of vertices there is no monochromatic path between them and for every vertex v in V(D)∖N there is a monochromatic path from v to some vertex in N. We denote by A⁺(u) the set of arcs of D that have u as the initial endpoint.
In this paper we introduce the concept of semikernel modulo i by monochromatic paths of an m-coloured digraph. This concept allow us to find sufficient conditions for the existence of a kernel by monochromatic paths in an m-coloured digraph. In particular we deal with bipartite tournaments such that A⁺(z) is monochromatic for each z ∈ V(D).
Źródło:
Discussiones Mathematicae Graph Theory; 2009, 29, 2; 349-360
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Monochromatic paths and monochromatic sets of arcs in 3-quasitransitive digraphs
Autorzy:
Galeana-Sánchez, Hortensia
Rojas-Monroy, R.
Zavala, B.
Powiązania:
https://bibliotekanauki.pl/articles/744398.pdf
Data publikacji:
2009
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
m-coloured digraph
3-quasitransitive digraph
kernel by monochromatic paths
γ-cycle
quasi-monochromatic digraph
Opis:
We call the digraph D an m-coloured digraph if the arcs of D are coloured with m colours. A directed path is called monochromatic if all of its arcs are coloured alike. A set N of vertices of D is called a kernel by monochromatic paths if for every pair of vertices of N there is no monochromatic path between them and for every vertex v ∉ N there is a monochromatic path from v to N. We denote by A⁺(u) the set of arcs of D that have u as the initial vertex. We prove that if D is an m-coloured 3-quasitransitive digraph such that for every vertex u of D, A⁺(u) is monochromatic and D satisfies some colouring conditions over one subdigraph of D of order 3 and two subdigraphs of D of order 4, then D has a kernel by monochromatic paths.
Źródło:
Discussiones Mathematicae Graph Theory; 2009, 29, 2; 337-347
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Monochromatic paths and monochromatic sets of arcs in quasi-transitive digraphs
Autorzy:
Galeana-Sánchez, Hortensia
Rojas-Monroy, R.
Zavala, B.
Powiązania:
https://bibliotekanauki.pl/articles/744061.pdf
Data publikacji:
2010
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
m-coloured quasi-transitive digraph
kernel by monochromatic paths
Opis:
Let D be a digraph, V(D) and A(D) will denote the sets of vertices and arcs of D, respectively. We call the digraph D an m-coloured digraph if each arc of D is coloured by an element of {1,2,...,m} where m ≥ 1. A directed path is called monochromatic if all of its arcs are coloured alike. A set N of vertices of D is called a kernel by monochromatic paths if there is no monochromatic path between two vertices of N and if for every vertex v not in N there is a monochromatic path from v to some vertex in N. A digraph D is called a quasi-transitive digraph if (u,v) ∈ A(D) and (v,w) ∈ A(D) implies (u,w) ∈ A(D) or (w,u) ∈ A(D). We prove that if D is an m-coloured quasi-transitive digraph such that for every vertex u of D the set of arcs that have u as initial end point is monochromatic and D contains no C₃ (the 3-coloured directed cycle of length 3), then D has a kernel by monochromatic paths.
Źródło:
Discussiones Mathematicae Graph Theory; 2010, 30, 4; 545-553
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies