- Tytuł:
- Improved upper bounds for nearly antipodal chromatic number of paths
- Autorzy:
-
Shen, Yu-Fa
Zheng, Guo-Ping
He, Wen-Jie - Powiązania:
- https://bibliotekanauki.pl/articles/743717.pdf
- Data publikacji:
- 2007
- Wydawca:
- Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
- Tematy:
-
radio colorings
nearly antipodal chromatic number
paths - Opis:
- For paths Pₙ, G. Chartrand, L. Nebeský and P. Zhang showed that $ac'(Pₙ) ≤ \binom{n-2}{2} + 2$ for every positive integer n, where ac'(Pₙ) denotes the nearly antipodal chromatic number of Pₙ. In this paper we show that $ac'(Pₙ) ≤ \binom{n-2}{2} - n/2 - ⎣10/n⎦ + 7$ if n is even positive integer and n ≥ 10, and $ac'(Pₙ) ≤ \binom{n-2}{2} - (n-1)/2 - ⎣13/n⎦ + 8$ if n is odd positive integer and n ≥ 13. For all even positive integers n ≥ 10 and all odd positive integers n ≥ 13, these results improve the upper bounds for nearly antipodal chromatic number of Pₙ.
- Źródło:
-
Discussiones Mathematicae Graph Theory; 2007, 27, 1; 159-174
2083-5892 - Pojawia się w:
- Discussiones Mathematicae Graph Theory
- Dostawca treści:
- Biblioteka Nauki