Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Mohamed, Ahmed" wg kryterium: Autor


Wyświetlanie 1-5 z 5
Tytuł:
Detection of partial rotor bar rupture of a cage induction motor using least square support vector machine approach
Autorzy:
Birame, M’hamed
Bessedik, Sid Ahmed
Benkhoris, Mohamed Fouad
Powiązania:
https://bibliotekanauki.pl/articles/1840890.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Polskie Towarzystwo Diagnostyki Technicznej PAN
Tematy:
fault diagnosis
partial rupture rotor bar
spectral analysis
least square support vector machine
LS-SVM
diagnostyka uszkodzeń
silnik indukcyjny
wirnik
analiza widmowa
maszyna wektorów nośnych
Opis:
Squirrel cage induction motors suffer from numerous faults, for example cracks in the rotor bars. This paper aims to present a novel algorithm based on Least Squares Support Vector Machine (LS-SVM) for detection partial rupture rotor bar of the squirrel cage asynchronous machine. The stator current spectral analysis based on FFT method is applied in order to extract the fault frequencies related to rotor bar partial rupture. Afterward the LS-SVM approach is established as monitoring system to detect the degree of rupture rotor bar. The training and testing data sets used are derived from the spectral analysis of one stator phase current, containing information about characteristic harmonics related to the partial rupture rotor bar. Satisfactory and more accurate results are obtained by applying LS-SVM to fault diagnosis of rotor bar.
Źródło:
Diagnostyka; 2021, 22, 1; 57-63
1641-6414
2449-5220
Pojawia się w:
Diagnostyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Fault diagnosis-based observers using Kalman filters and Luenberger estimators: Application to the pitch system fault actuators
Autorzy:
Zemali, Zakaria
Cherroun, Lakhmissi
Hadroug, Nadji
Nadour, Mohamed
Hafaifa, Ahmed
Powiązania:
https://bibliotekanauki.pl/articles/2174470.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Polskie Towarzystwo Diagnostyki Technicznej PAN
Tematy:
fault detection
estimation
pitch system
Kalman filter
Luenberger observer
wykrywanie uszkodzeń
estymacja
filtr Kalmana
obserwator Luenbergera
Opis:
This paper aims to present a robust fault diagnosis structure-based observers for actuator faults in the pitch part system of the wind turbine benchmark. In this work, two linear estimators have been proposed and investigated: the Kalman filter and the Luenberger estimator for observing the output states of the pitch system in order to generate the appropriate residual between the measured positions of blades and the estimated values. An inference step as a decision block is employed to decide the existence of faults in the process, and to classify the detected faults using a predetermined threshold defined by upper and lower limits. All actuator faults in the pitch system of the horizontal wind turbine benchmark are studied and investigated. The obtained simulation results show the ability of the proposed diagnosis system to determine effectively the occurred faults in the pitch system. Estimation of the output variables is effectively realized in both situations: without and with the occurrence of faults in the studied process. A comparison between the two used observers is demonstrated.
Źródło:
Diagnostyka; 2023, 24, 1; art. no. 2022110
1641-6414
2449-5220
Pojawia się w:
Diagnostyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Intelligent fault diagnosis of power transmission line using fuzzy logic and artificial neural network
Autorzy:
Touati, Khaled Omer Mokhtar
Boudiaf, Mohamed
Merzouk, Imad
Hafaifa, Ahmed
Powiązania:
https://bibliotekanauki.pl/articles/2146743.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Polskie Towarzystwo Diagnostyki Technicznej PAN
Tematy:
power system diagnosis
fault detection
electrical transmission lines
ANN
fuzzy logic
system elektroenergetyczny
diagnozowanie
linia elektroenergetyczna
wykrywanie uszkodzeń
logika rozmyta
sztuczne sieci neuronowe
Opis:
In the industrial sector, transmission lines are an important part of the electrical grid. Thus it is important to protect it from all the different faults that may occur as soon as possible to supply the electric power continuously. This paper presents a modern solutions and a comparative study of fault detection and identification in electrical transmission lines using artificial neural network (ANN) compare to the fuzzy logic. Faults in transmission line of various types have been created using simulation model. An intelligent monitoring system (IFD: Intelligent Fault Diagnosis) was used at both ends of a 230 kV overhead transmission line, voltage and current measurements exploited as indicator data for this system. Both approaches were found to be robust, accurate and reliable to detect the fault when it occurs, to determine the fault type short circuit or opening of a power line (open circuit), to locate the fault and to determine which phase was faulted.
Źródło:
Diagnostyka; 2022, 23, 4; art. no. 2022410
1641-6414
2449-5220
Pojawia się w:
Diagnostyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Least square support vectors machines approach to diagnosis of stator winding short circuit fault in induction motor
Autorzy:
Birame, M’hamed
Taibi, Djamel
Bessedik, Sid Ahmed
Benkhoris, Mohamed Fouad
Powiązania:
https://bibliotekanauki.pl/articles/327458.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Polskie Towarzystwo Diagnostyki Technicznej PAN
Tematy:
induction motor
inter-turn short circuit
fault diagnosis
least square support vector machine
LS-SVM
silnik indukcyjny
zwarcie międzyzwojowe
diagnostyka uszkodzeń
Opis:
Various approaches have been proposed to monitor the state of machines by intelligent techniques such as the neural network, fuzzy logic, neuro-fuzzy, pattern recognition. However, the use of LS-SVM. This article presents an automatic computerized system for the diagnosis and the monitoring of faults between turns of the stator in IM applying the LS-SVM least square support vector machine. in this study for the detection of short circuit faults in the stator winding of the induction motor. Since it requires a mathematical model suitable for modelling defects, a defective IM model is presented. The proposed method uses the stator current as input and at the output decides the state of the motor, indicating the severity of the short-circuit fault.
Źródło:
Diagnostyka; 2020, 21, 4; 35-41
1641-6414
2449-5220
Pojawia się w:
Diagnostyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Fault detection and diagnosis of photovoltaic system based on neural networks approach
Autorzy:
Rahmoune, Ben Mohamed
Iratni, Abdelhamid
Amari, Amel Sabrine
Hafaifa, Ahmed
Colak, Ilhami
Powiązania:
https://bibliotekanauki.pl/articles/2203647.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Polskie Towarzystwo Diagnostyki Technicznej PAN
Tematy:
photovoltaic system
fault detection
neural networks
diagnostic system
residue evaluation
system fotowoltaiczny
wykrywanie uszkodzeń
sieci neuronowe
system diagnostyczny
Opis:
Solar energy has become one of the most important renewable energies in the world. With the increasing installation of power plants in the world, the supervision and diagnosis of photovoltaic systems have become an important challenge with the increased occurrence of various internal and external faults. Indeed, this work proposes a new solar power plant diagnosis based on the artificial neural network approach. The developed model was to improve the performance and reliability of the power plant located in Tamanrasset, Algeria, which is subjected to varying weather conditions in terms of radiation and ambient temperature. By using the real data collected from the studied system, this approach allow to increase electricity production and address any issues that may arise quickly, ensuring uninterrupted power supply for the region. Neural networks have shown interesting results with high accuracy. This fault diagnosis approach allows to determine the time of occurrence of a fault affecting the examined PV system. Also, allow an early detection of failures and degradation of the system, which contributes to improving the productivity of this photovoltaic installation. With a significant reduction in the time needed to repair the damage caused by these faults and improve the reliability and continuity of the electrical energy production service.
Źródło:
Diagnostyka; 2023, 24, 3; art. no. 2023303
1641-6414
2449-5220
Pojawia się w:
Diagnostyka
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies