Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "k-means ++" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Clustering of data represented by pairwise comparisons
Autorzy:
Dvoenko, Sergey
Powiązania:
https://bibliotekanauki.pl/articles/2183479.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
clustering
k-means
distance
similarity
Opis:
In this paper, experimental data, given in the form of pairwise comparisons, such as distances or similarities, are considered. Clustering algorithms for processing such data are developed based on the well-known k-means procedure. Relations to factor analysis are shown. The problems of improving clustering quality and of finding the proper number of clusters in the case of pairwise comparisons are considered. Illustrative examples are provided.
Źródło:
Control and Cybernetics; 2022, 51, 3; 343--387
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Extending k-means with the description comes first approach
Autorzy:
Stefanowski, J.
Weiss, D.
Powiązania:
https://bibliotekanauki.pl/articles/970926.pdf
Data publikacji:
2007
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
document clustering
cluster labels
k-means algorithm
information retrieval
Opis:
This paper describes a technique for clustering large collections of short and medium length text documents such as press articles, news stories and the like. The technique called description comes first (DCF) consists of identification of related document clusters, selection of salient phrases relevant to these clusters and reallocation of documents matching the selected phrases to form final document groups. The advantages of this technique include more comprehensive cluster labels and clearer (more transparent) relationship between cluster labels and their content. We demonstrate the DCF by taking a standard k-means algorithm as a baseline and weaving DCF elements into it; the outcome is the descriptive k-means (DKM) algorithm. The paper goes through technical background explaining how to implement DKM efficiently and ends with the description of an experiment measuring clustering quality on a benchmark document collection 20-newsgroups. Short fragments of this paper appeared at the poster session of the RIAO 2007 conference, Pittsburgh, PA, USA (electronic proceedings only).
Źródło:
Control and Cybernetics; 2007, 36, 4; 1009-1035
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies