- Tytuł:
- Inverse shape optimization problems and application to airfoils
- Autorzy:
-
Desideri, J.-A.
Zolesio, J.-P. - Powiązania:
- https://bibliotekanauki.pl/articles/970144.pdf
- Data publikacji:
- 2005
- Wydawca:
- Polska Akademia Nauk. Instytut Badań Systemowych PAN
- Tematy:
-
równanie różniczkowe cząstkowe
metody obliczeniowe
optymalizacja kształtu
rachunek wariacyjny
Partial-Differential Equations (PDEs)
computational methods
shape optimization
calculus of variations - Opis:
-
We consider a set of parameterized planar arcs (x(t), y(t)) (0
1. We first prove the strict convexity of the functional for alpha > 2. Under the less stringent condition alpha > 1, we derive the stationarity condition and the formal expression for the Hessian, and prove that if a point exists at which the functional is stationary w.r.t. variations in y = y(t), for fixed x = x(t), then it is unique and realizes a global minimum; the functional is then unimodal. We also observe that the stationarity condition (Euler-Lagrange quation) is an integral-differential equation depending only on the arc shape and not on the parameterization per se, which gives the variational problem a certain intrinsic character. Then, we solve the inverse problem: given an admissible parameterized arc, we construct a smooth weighting function omega(t) for which the stationarity condition is satisfied, thus making the functional unimodal, and derive certain asymptotics. A numerical example pertaining to optimum-shape design in aerodynamics is computed for illustration. - Źródło:
-
Control and Cybernetics; 2005, 34, 1; 165-202
0324-8569 - Pojawia się w:
- Control and Cybernetics
- Dostawca treści:
- Biblioteka Nauki