Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "workflow" wg kryterium: Temat


Wyświetlanie 1-5 z 5
Tytuł:
On a workflow model based on generalized communicating P systems
Autorzy:
Balasko, A.
Powiązania:
https://bibliotekanauki.pl/articles/305481.pdf
Data publikacji:
2016
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
workflow languages
workflow patterns
control patterns
membrane computing
Generalized Communicating P Systems
Opis:
This paper introduces a new formal mathematical model for investigating work- flows from dynamical and behavioural point of view. The model is designed on the basis of a special variant of the biology-inspired formal computational model called membrane systems, where the jobs or services are represented by membrane objects whose behaviour is defined by communication and generalization rules. The model supports running computations in a massive parallel manner, which makes it ideal to model high throughput workflow interpreters. Among the variants introduced in the literature, we have selected the Generalized Communicating P Systems, as it focuses on the communication among the membranes. Most of the workflow languages, based on different formal models like Petri nets or Communicating Sequential Processes, support several predefined structures – namely workflow patterns – to control the workflow interpretation such as conditions, loops etc. In this paper we show how these patterns are adapted into the membrane environment which, taking into account that membrane systems can be used to study complex dynamic systems’ runtime behaviour, makes this model a relevant alternative for the current models.
Źródło:
Computer Science; 2016, 17 (1); 45-68
1508-2806
2300-7036
Pojawia się w:
Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A novel adaptive checkpointing method based on information obtained from workflow structure
Autorzy:
Kail, E.
Kacsuk, P.
Kozlovszky, M.
Powiązania:
https://bibliotekanauki.pl/articles/305730.pdf
Data publikacji:
2016
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
scientific workflow
checkpoint
dynamic execution
Opis:
Scientific workflows are data- and compute-intensive; thus, they may run for days or even weeks on parallel and distributed infrastructures such as grids, supercomputers, and clouds. In these high-performance computing infrastruc- tures, the number of failures that can arise during scientific-workflow enact- ment can be high, so the use of fault-tolerance techniques is unavoidable. The most-frequently used fault-tolerance technique is taking checkpoints from time to time; when failure is detected, the last consistent state is restored. One of the most-critical factors that has great impact on the effectiveness of the checkpointing method is the checkpointing interval. In this work, we propose a Static (Wsb) and an Adaptive (AWsb) Workflow Structure Based checkpoint- ing algorithm. Our results showed that, compared to the optimal checkpointing strategy, the static algorithm may decrease the checkpointing overhead by as much as 33% without affecting the total processing time of workflow execution. The adaptive algorithm may further decrease this overhead while keeping the overall processing time at its necessary minimum.
Źródło:
Computer Science; 2016, 17 (3); 387-406
1508-2806
2300-7036
Pojawia się w:
Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Building science gateways by utilizing the generic WS-PGRADE/gUSE workflow system
Autorzy:
Balasko, A.
Farkas, Z.
Kacsuk, P.
Powiązania:
https://bibliotekanauki.pl/articles/305768.pdf
Data publikacji:
2013
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
distributed computing
workflow systems
Science Gateway
Opis:
Enabling scientists to use remote distributed infrastructures, parametrize and execute common science-domain applications transparently is actual and a highly relevant field of distributed computing. For this purpose a general solution is the concept of Science Gateways. WS-PGRADE/gUSE system offers a transparent and web-based interface to access distributed resources (grids, clusters or clouds), extended by a powerful generic purpose workflow editor and enactment system, which can be used to compose scientific applications into data-flow based workflow structures. It’s a generic web-based portal solution to organize scientific applications in a workflow structure and execute them on remote computational resources. As the portal defines nodes as black-box applications uploaded by the users, it does not provide any application specific interface by default. In this paper we show what kind of tools, APIs and interfaces are available in WS-PGRADE/gUSE to customize it to have an application specific gateway.
Źródło:
Computer Science; 2013, 14 (2); 307-325
1508-2806
2300-7036
Pojawia się w:
Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A workflow-oriented approach to Propagation Models in Heliophysics
Autorzy:
Pierantoni, G.
Carley, E.
Byrne, J.
Perez-Suarez, D.
Gallagher, P. T.
Powiązania:
https://bibliotekanauki.pl/articles/305701.pdf
Data publikacji:
2014
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
heliophysics
workflow
TAVERNA
Coronal Mass Ejection
propagation models
Opis:
The Sun is responsible for the eruption of billions of tons of plasma and the generation of near light-speed particles that propagate throughout the solar system and beyond. If directed towards Earth, these events can be damaging to our tecnological infrastructure. Hence there is an effort to understand the cause of the eruptive events and how they propagate from Sun to Earth. However, the physics governing their propagation is not well understood, so there is a need to develop a theoretical description of their propagation, known as a Propagation Model, in order to predict when they may impact Earth. It is often difficult to define a single propagation model that correctly describes the physics of solar eruptive events, and even more difficult to implement models capable of catering for all these complexities and to validate them using real observational data. In this paper, we envisage that workflows offer both a theoretical and practical framework for a novel approach to propagation models. We define a mathematical framework that aims at encompassing the different modalities with which workflows can be used, and provide a set of generic building blocks written in the TAVERNA workflow language that users can use to build their own propagation models. Finally we test both the theoretical model and the composite building blocks of the workflow with a real Science Use Case that was discussed during the 4th CDAW (Coordinated Data Analysis Workshop) event held by the HELIO project. We show that generic workflow building blocks can be used to construct a propagation model that succesfully describes the transit of solar eruptive events toward Earth and predict a correct Earth-impact time.
Źródło:
Computer Science; 2014, 15 (3); 271-291
1508-2806
2300-7036
Pojawia się w:
Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Enabling generic distributed computing infrastructure compatibility for workflow management systems
Autorzy:
Kozlovszky, M.
Karoczkai, K.
Marton, I.
Balasko, A.
Marosi, A.
Kacsuk, P.
Powiązania:
https://bibliotekanauki.pl/articles/305454.pdf
Data publikacji:
2012
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
workflow management systems
infrastructure interoperability
Distributed Computing Infrastructure
DCI
DCI Bridge
Opis:
Solving workflow management system’s Distributed Computing Infrastructure (DCI) incompatibility and their workflow interoperability issues are very challenging and complex tasks. Workflow management systems (and therefore their workflows, workflow developers and also their end-users) are bounded tightly to some limited number of supported DCIs, and efforts required to allow additional DCI support. In this paper we are specifying a concept how to enable generic DCI compatibility for grid workflow management systems (such as ASKALON, MOTEUR, gUSE/WS-PGRADE, etc.) on job and indirectly on workflow level. To enable DCI compatibility among the different workflow management systems we have developed the DCI Bridge software solution. In this paper we will describe its internal architecture, provide usage scenarios to show how the developed service resolve the DCI interoperability issues between various middleware types. The generic DCI Bridge service enables the execution of jobs onto the existing major DCI platforms (such as Service Grids (Globus Toolkit 2 and 4, gLite, ARC, UNICORE), Desktop Grids, Web services, or even cloud based DCIs).
Źródło:
Computer Science; 2012, 13 (3); 61-78
1508-2806
2300-7036
Pojawia się w:
Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies