Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "-, Sunil" wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Exploring convolutional auto-encoders for representation learning on networks
Autorzy:
Nerurkar, Pranav Ajeet
Chandane, Madhav
Bhirud, Sunil
Powiązania:
https://bibliotekanauki.pl/articles/305489.pdf
Data publikacji:
2019
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
network representation learning
deep learning
graph convolutional neural networks
Opis:
A multitude of important real-world or synthetic systems possess network structures. Extending learning techniques such as neural networks to process such non-Euclidean data is therefore an important direction for machine learning re- search. However, this domain has received comparatively low levels of attention until very recently. There is no straight-forward application of machine learning to network data, as machine learning tools are designed for i:i:d data, simple Euclidean data, or grids. To address this challenge, the technical focus of this dissertation is on the use of graph neural networks for network representation learning (NRL); i.e., learning the vector representations of nodes in networks. Learning the vector embeddings of graph-structured data is similar to embedding complex data into low-dimensional geometries. After the embedding process is completed, the drawbacks associated with graph-structured data are overcome. The current inquiry proposes two deep-learning auto-encoder-based approaches for generating node embeddings. The drawbacks in such existing auto-encoder approaches as shallow architectures and excessive parameters are tackled in the proposed architectures by using fully convolutional layers. Extensive experiments are performed on publicly available benchmark network datasets to highlight the validity of this approach.
Źródło:
Computer Science; 2019, 20 (3); 273-288
1508-2806
2300-7036
Pojawia się w:
Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
FPGA-based secure and noiseless image transmission using lea and optimized bilateral filter
Autorzy:
Hebbale, Sunil B.
Akula, V.S. Giridhar
Baraki, Parashuram
Powiązania:
https://bibliotekanauki.pl/articles/27312891.pdf
Data publikacji:
2022
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
lightweight encryption algorithm
bilateral filter
whale optimization algorithm
discrete wavelet transform
Opis:
In today’s world, the transmission of secured and noiseless images is a difficult task. Therefore, effective strategies are important for securing data or secret images from attackers. Besides, denoising approaches are important for obtaining noise-free images. For this, an effective crypto-steganography method that is based on a lightweight encryption algorithm (LEA) and the modified least significant bit (MLSB) method for secured transmission is proposed. Moreover, a bilateral filter-based whale optimization algorithm (WOA) is used for image denoising. Before the image transmission, a secret image is encrypted by the LEA algorithm and embedded into the cover image using discrete wavelet transform (DWT) and MLSB techniques. After the image transmission, an extraction process is performed in order to recover the secret image. Finally, a bilateral WOA filter is used to remove the noise from the secret image. The Verilog code for the proposed model is designed and simulated in Xilinx software. Finally, the simulation results show that the proposed filtering technique results in performance that is superior to conventional bilateral and Gaussian filters in terms of the peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM).
Źródło:
Computer Science; 2022, 23 (4); 451--466
1508-2806
2300-7036
Pojawia się w:
Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies