Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Będowska-Sójka, Barbara" wg kryterium: Wszystkie pola


Wyświetlanie 1-1 z 1
Tytuł:
Unemployment Rates Forecasts – Unobserved Component Models Versus SARIMA Models In Central And Eastern European Countries
Prognozowanie stop bezrobocia – porównanie modeli SARIMA i modeli nieobserwowanych komponentów dla wybranych krajów Europy Środkowej i Wschodniej
Autorzy:
Będowska-Sójka, Barbara
Powiązania:
https://bibliotekanauki.pl/articles/633406.pdf
Data publikacji:
2017
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
stopa bezrobocia
modele nieobserwowanych komponentów
modele SARIMA
trafność prognoz
unemployment rate
unobserved component
SARIMA models
forecasting accuracy
Opis:
W artykule porównano prognozy wskaźników stóp bezrobocia w ośmiu krajach Europy Środkowej i Wschodniej. Zastosowano modele nieobserwowanych komponentów i sezonowe modele ARIMA w przesuwanym oknie i postawiono prognozy krótkoterminowe weryfikowane na podstawie trafności prognozy spoza próby. Wykazano, że w przypadku trzech krajów stopa bezrobocia charakteryzuje się bezwarunkową asymetrią. Generalnie w przypadku stosowanych metod, dla połowy badanych szeregów nie znaleziono statystycznie istotnej różnicy w dokładności stawianych prognoz. W pozostałych przypadkach odpowiednio dobrany sezonowy model ARIMA pozwalał na postawienie lepszych prognoz. Ponadto wykazano, że trafność prognoz pogarsza się w okresach gwałtownych wzrostów i spadków stóp bezrobocia, a poprawia się w okresach nieznacznych zmian wielkości tego wskaźnika.
In this paper we compare the accuracy of unemployment rates forecasts of eight Central and Eastern European countries. The unobserved component models and seasonal ARIMA models are used within a rolling short-term forecast experiment as an out-of-sample test of forecast accuracy. We find that unemployment rates present clear unconditional asymmetry in three out of eight countries. Half the cases there is no difference between forecasting accuracy of the methods used in the study. In the remaining, a proper specification of seasonal ARIMA model allows to generate better forecasts than from unobserved component models. The forecasting accuracy deteriorates in periods of rapid upward and downward movement and improves in periods of gradual change in the unemployment rates.
Źródło:
Comparative Economic Research. Central and Eastern Europe; 2017, 20, 2; 91-107
1508-2008
2082-6737
Pojawia się w:
Comparative Economic Research. Central and Eastern Europe
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies