Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "smoothness" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Approximation by bivariate Mazhar-Totik operators
Autorzy:
Wachnicki, Eugeniusz
Powiązania:
https://bibliotekanauki.pl/articles/746253.pdf
Data publikacji:
2010
Wydawca:
Polskie Towarzystwo Matematyczne
Tematy:
positive linear operator
rate of convergence
Voronovskaya theorem
modulus of continuity
modulus of smoothness
mixed modulus of smoothness
limit problem
Opis:
The aim of this paper is to study a bivariate version of the operator investigated in [2], [4]. We shall present Voronovskaya type theorem and theorems giving a rate of convergence of this operator. Some applications for the limit problem are indicated.
Źródło:
Commentationes Mathematicae; 2010, 50, 2
0373-8299
Pojawia się w:
Commentationes Mathematicae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Characteristic of monotonicity of Orlicz function spaces equipped with the Orlicz norm
Autorzy:
Foralewski, Paweł
Hudzik, Henryk
Kaczmarek, Radosław
Krbec, Miroslav
Powiązania:
https://bibliotekanauki.pl/articles/746439.pdf
Data publikacji:
2013
Wydawca:
Polskie Towarzystwo Matematyczne
Tematy:
Orlicz space
Orlicz norm
Kothe space
Kothe dual
characteristic of monotonicity
strict monotonicity
point of order smoothness
Opis:
We first prove that the property of strict monotonicity of a~K\"othe space \((E,\|.\|_E)\) and\slash or of its K\"othe dual \((E',\|.\|_{E'})\) can be used successfully to compare the supports of \(x\in E\backslash\{\theta\}\) and \(y\in S(E')\), where \(=\|x\|_E\). Next we prove that any element \(x\in S_{+}(E)\) with \(\mu(T\backslash\operatorname{supp} x)=0\) is a~point of order smoothness in \(E\), whenever \(E\) is an order continuous K\"othe space. Finally, we present formulas for the characteristic of monotonicity of Orlicz function spaces endowed with the Orlicz norm in the case when the generating Orlicz function does not satisfy suitable \(\Delta_2\)-condition or the measure is non-atomic infinite, and some lower and upper estimates for the characteristic of monotonicity of this spaces when the measure is non-atomic and finite.
Źródło:
Commentationes Mathematicae; 2013, 53, 2
0373-8299
Pojawia się w:
Commentationes Mathematicae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Weak nearly uniform smoothness of the \(\psi\)-direct sums \((X_1 \oplus \dots\oplus X_N)_\psi\)
Autorzy:
Kato, Mikio
Tamura, Takayuki
Powiązania:
https://bibliotekanauki.pl/articles/746388.pdf
Data publikacji:
2012
Wydawca:
Polskie Towarzystwo Matematyczne
Tematy:
absolute norm
convex function
\(\psi\)-direct sum of Banach spaces
weak nearly uniform smoothness
Garcı́a-Falset coefficient
Schur property
fixed point property
Opis:
We shall characterize the weak nearly uniform smoothness of the \(\psi\)-direct sum \((X_1\oplus \dots\oplus X_N)_\psi\) of \(N\) Banach spaces \(X_1,\dots,X_N\), where \(\psi\) is a convex function satisfying certain conditions on the convex set \(\Delta_N = \{(s_1 ,\dots , s_{N-1})\in \mathbb{R}_+^{N-1} : \sum_{i=1}^{N-1} s_i \leq 1\). To do this a class of convex functions which yield \(\ell_1\)-like norms will be introduced. We shall apply our result to the fixed point property for nonexpansive mappings (FPP). In particular an example will be presented which indicates that there are plenty of Banach spaces with FPP failing to be uniformly non-square.
Źródło:
Commentationes Mathematicae; 2012, 52, 2
0373-8299
Pojawia się w:
Commentationes Mathematicae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Weak nearly uniform soothness and worth property of \(\psi\)-direct sums of Banach spaces
Autorzy:
Kato, Mikio
Tamura, Takayuki
Powiązania:
https://bibliotekanauki.pl/articles/746218.pdf
Data publikacji:
2006
Wydawca:
Polskie Towarzystwo Matematyczne
Tematy:
absolute norm
convex function
\(\psi\)-direct sum of Banach spaces
weak nearly uniform smoothness
Garcia-Falset coefficient
Schur property
WORTH property
uniform non-squareness
fixed point property
Opis:
We shall characterize the weak nearly uniform smoothness of the \(\psi\)-direct sum \(X \oplus_\psi Y\) of Banach spaces \(X\) and \(Y\). The Schur and WORTH properties will be also characterized. As a consequence we shall see in the \(\ell_\infty\)-sums of Banach spaces there are many examples of Banach spaces with the fixed point property which are not uniformly non-square.
Źródło:
Commentationes Mathematicae; 2006, 46, 1
0373-8299
Pojawia się w:
Commentationes Mathematicae
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies