Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Nonlinear Equations" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
On theorems for weak solutions of nonlinear differential equations with and without delay in Banach spaces
Autorzy:
Gomaa, Adel Mahmoud
Powiązania:
https://bibliotekanauki.pl/articles/745302.pdf
Data publikacji:
2007
Wydawca:
Polskie Towarzystwo Matematyczne
Tematy:
Nonlinear differential equations
weak solutions
measures of noncompactness
delay
Opis:
In the present work we give an existence theorem for bounded weak solution of the differential equation \[ \dot{x}(t) = A(t)x(t) + f (t, x(t)),\quad t \geq 0 \] where \(\{A(t) : t \in I\mathbb{R}^+ \}\) is a family of linear operators from a Banach space \(E\) into itself, \(B_r = \{x \in E : \|x\| \leq r\}\) and \(f \colon \mathbb{R}^+ \times B_r \to E\) is weakly-weakly continuous. Furthermore, we give existence theorem for the differential equation with delay \[ \dot{x}(t) = \hat{A}(t) x(t) + f^d (t, θ_t x)\quad \text{if}\ t \in [0, T], \] where \(T, d \gt 0\), \(C_{B_r} ([-d, 0])\) is the Banach space of continuous functions from \([-d, 0]\) into \(B_r\), \(f_d\colon [0, T] \times C_{B_r} ([-d, 0]) \to E\) weakly-weakly continuous function, \(\hat{A}(t)\colon [0,T] \to L(E)\) is strongly measurable and Bochner integrable operator on \([0,T]\) and \(θ_t x(s) = x(t + s)\) for all \(s \in [-d, 0]\).
Źródło:
Commentationes Mathematicae; 2007, 47, 2
0373-8299
Pojawia się w:
Commentationes Mathematicae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Numerical approximations of parabolic functional differential equations on unbounded domains
Autorzy:
Baranowska, Anna
Powiązania:
https://bibliotekanauki.pl/articles/745298.pdf
Data publikacji:
2007
Wydawca:
Polskie Towarzystwo Matematyczne
Tematy:
functional differential equations
stability and convergence
nonlinear estimates of the Perron type
Opis:
The paper is concerned with initial problems for nonlinear parabolic functional differential equations. A general class of difference methods is constructed. A theorem on the error estimate of approximate solutions for difference functional equations of the Volterra type with an unknown function of several variables is presented. The convergence of explicit difference schemes is proved by means of consistency and stability arguments. It is assumed that given function satisfy nonlinear estimates of the Perron type with respect to a functional variable. Results obtained in the paper can be applied to differential integral problems and equations with retarded variables. Numerical examples are presented.
Źródło:
Commentationes Mathematicae; 2007, 47, 2
0373-8299
Pojawia się w:
Commentationes Mathematicae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A finite difference method for quasi-linear and nonlinear differential functional parabolic equations with Neumann’s condition
Autorzy:
Sapa, Lucjan
Powiązania:
https://bibliotekanauki.pl/articles/962640.pdf
Data publikacji:
2009
Wydawca:
Polskie Towarzystwo Matematyczne
Tematy:
parabolic differential functional equations
difference methods
nonlinear estimates of the generalized Perron type
Opis:
Classical solutions of nonlinear second-order partial differential functional equations of parabolic type with Neumann’s condition are approximated in the paper by solutions of associated explicit difference functional equations. The functional dependence is of the Volterra type. Nonlinear estimates of the generalized Perron type for given functions are assumed. The convergence and stability results are proved with the use of the comparison technique. These theorems in particular cover quasi-linear equations, but such equations are also treated separately. The known results on similar difference methods can be obtained as particular cases of our simple result.
Źródło:
Commentationes Mathematicae; 2009, 49, 1; 83-106
0373-8299
Pojawia się w:
Commentationes Mathematicae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Implicit difference methods for infinite systems of hyperbolic functional differential equations
Autorzy:
Szafrańska, Anna
Powiązania:
https://bibliotekanauki.pl/articles/745990.pdf
Data publikacji:
2010
Wydawca:
Polskie Towarzystwo Matematyczne
Tematy:
initial boundary value problems
difference functional equations
difference methods
stability and convergence
interpolating operators
nonlinear estimates of the Perron type
Opis:
The paper deal with classical solutions of initial boundary value problems for infinite systems of nonlinear differential functional equations. Two types of difference schemes are constructed. First we show that solutions of our differential problem can be approximated by solutions of infinite difference functional schemes. In the second part of the paper we proof that solutions of finite difference systems approximate the solutions of aur differential problem. We give a complete convergence analysis for both types of difference methods. We adopt nonlinear estimates of the Perron type for given functions with respect to the functional variable. The proof of the stability is based on the comparison technique. Numerical examples are presented.
Źródło:
Commentationes Mathematicae; 2010, 50, 1
0373-8299
Pojawia się w:
Commentationes Mathematicae
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies