Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Difference equations" wg kryterium: Wszystkie pola


Wyświetlanie 1-9 z 9
Tytuł:
Reconstruction of potential and boundary conditions for second order difference equations
Autorzy:
Currie, Sonja
Love, Anne
Powiązania:
https://bibliotekanauki.pl/articles/962820.pdf
Data publikacji:
2018
Wydawca:
Polskie Towarzystwo Matematyczne
Tematy:
Difference equations
inverse problem
boundary value problems
potential
eigenvalues
Opis:
Assume the eigenvalues and the weights are given for a difference boundary value problem and that the form of the boundary conditions at the endpoints is known. In particular, it is known whether the endpoints are fixed (i.e. Dirichlet or non-Dirichlet boundary conditions) or whether the endpoints are free to move (i.e. boundary conditions with affine dependence on the eigenparameter). This work illustrates how the potential as well as the exact boundary conditions can be uniquely reconstructed. The procedure is inductive on the number of unit intervals. This paper follows along the lines of S. Currie and A. Love, Inverse problems for difference equations with quadratic eigenparameter dependent boundary conditions, \emph{Quaestiones Mathematicae}, 40 (2017), no. 7, 861−877. Since the inverse problem considered in this paper contains more unknowns than the inverse problem considered in the above reference, an additional spectrum is required more often than was the case in the unique reconstruction of the potential alone.
Źródło:
Commentationes Mathematicae; 2018, 58, 1-2; 1-9
0373-8299
Pojawia się w:
Commentationes Mathematicae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Implicit difference methods for infinite systems of hyperbolic functional differential equations
Autorzy:
Szafrańska, Anna
Powiązania:
https://bibliotekanauki.pl/articles/745990.pdf
Data publikacji:
2010
Wydawca:
Polskie Towarzystwo Matematyczne
Tematy:
initial boundary value problems
difference functional equations
difference methods
stability and convergence
interpolating operators
nonlinear estimates of the Perron type
Opis:
The paper deal with classical solutions of initial boundary value problems for infinite systems of nonlinear differential functional equations. Two types of difference schemes are constructed. First we show that solutions of our differential problem can be approximated by solutions of infinite difference functional schemes. In the second part of the paper we proof that solutions of finite difference systems approximate the solutions of aur differential problem. We give a complete convergence analysis for both types of difference methods. We adopt nonlinear estimates of the Perron type for given functions with respect to the functional variable. The proof of the stability is based on the comparison technique. Numerical examples are presented.
Źródło:
Commentationes Mathematicae; 2010, 50, 1
0373-8299
Pojawia się w:
Commentationes Mathematicae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A finite difference method for quasi-linear and nonlinear differential functional parabolic equations with Neumann’s condition
Autorzy:
Sapa, Lucjan
Powiązania:
https://bibliotekanauki.pl/articles/962640.pdf
Data publikacji:
2009
Wydawca:
Polskie Towarzystwo Matematyczne
Tematy:
parabolic differential functional equations
difference methods
nonlinear estimates of the generalized Perron type
Opis:
Classical solutions of nonlinear second-order partial differential functional equations of parabolic type with Neumann’s condition are approximated in the paper by solutions of associated explicit difference functional equations. The functional dependence is of the Volterra type. Nonlinear estimates of the generalized Perron type for given functions are assumed. The convergence and stability results are proved with the use of the comparison technique. These theorems in particular cover quasi-linear equations, but such equations are also treated separately. The known results on similar difference methods can be obtained as particular cases of our simple result.
Źródło:
Commentationes Mathematicae; 2009, 49, 1; 83-106
0373-8299
Pojawia się w:
Commentationes Mathematicae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Explicit Difference Schemes for Nonlinear Differential Functional Parabolic Equations with Mixed Derivatives - Convergence Analysis
Autorzy:
Poliński, Artur
Powiązania:
https://bibliotekanauki.pl/articles/745697.pdf
Data publikacji:
2005
Wydawca:
Polskie Towarzystwo Matematyczne
Tematy:
Finite difference
stability
parabolic
nonlocal
Opis:
We study the initial-value problem for parabolic equations with mixed partial derivatives and constant coefficients, and with nonlinear and nonlocal right-hand sides. Nonlocal terms appear in the unknown function and its gradient. We analyze convergence of explicit finite difference schemes by means of discrete fundamental solutions.
Źródło:
Commentationes Mathematicae; 2005, 45, 2
0373-8299
Pojawia się w:
Commentationes Mathematicae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Impulsive differential equations with initial data difference
Autorzy:
Skóra, Lidia
Powiązania:
https://bibliotekanauki.pl/articles/745364.pdf
Data publikacji:
2011
Wydawca:
Polskie Towarzystwo Matematyczne
Tematy:
impulsive differential equation
impulsive differential inequalities
existence
monotone iterative method
extremal solutions
Opis:
In this paper, we present some results on impulsive differential inequalities and equations with initial and impulsive data difference.
Źródło:
Commentationes Mathematicae; 2011, 51, 1
0373-8299
Pojawia się w:
Commentationes Mathematicae
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-9 z 9

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies