Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "real-valued measurable cardinal" wg kryterium: Temat


Wyświetlanie 1-1 z 1
Tytuł:
The uniqueness of Haar measure and set theory
Autorzy:
Zakrzewski, Piotr
Powiązania:
https://bibliotekanauki.pl/articles/966757.pdf
Data publikacji:
1997
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
real-valued measurable cardinal
invariant measure
Haar measure
locally compact space
Opis:
Let G be a group of homeomorphisms of a nondiscrete, locally compact, σ-compact topological space X and suppose that a Haar measure on X exists: a regular Borel measure μ, positive on nonempty open sets, finite on compact sets and invariant under the homeomorphisms from G. Under some mild assumptions on G and X we prove that the measure completion of μ is the unique, up to a constant factor, nonzero, σ-finite, G-invariant measure defined on its domain iff μ is ergodic and the G-orbits of all points of X are uncountable. In particular, this is true if either G is a locally compact, σ-compact topological group acting continuously on X, or the space X is uniform and nonseparable, and G consists of uniformly equicontinuous unimorphisms of X.
Źródło:
Colloquium Mathematicum; 1997, 74, 1; 109-121
0010-1354
Pojawia się w:
Colloquium Mathematicum
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies