Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Rate" wg kryterium: Temat


Tytuł:
Biuret: a Potential Burning Rate Suppressant in Ammonium Chlorate(VII) Based Composite Propellants
Autorzy:
Dey, A.
Ghorpade, V. G.
Kumar, A.
Gupta, M.
Powiązania:
https://bibliotekanauki.pl/articles/358579.pdf
Data publikacji:
2014
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
burning rate suppressants
biuret
burning rate
HTPB
composite propellant
Opis:
Several composite propellant compositions containing various concentrations of biuret, a new burning rate suppressant, were formulated and studied to optimize the concentration of biuret in the composite propellant. Biuret was used here for the first time in a composite propellant as a burning rate suppressant. The theoretical properties of the compositions containing different concentrations of biuret were computed by using the NASA CEC-71 programme and the burning rate performances were evaluated. In addition, the sensitivity, thermal and mechanical properties of the compositions were also evaluated. The composition containing ammonium chlorate(VII) (AP) 65%, Al 15%, binder 20% and biuret 0-6% over the batch were prepared. The composition containing 6% biuret over the batch was insensitive to friction and impact. As the amount of biuret was increased, the energy, burning rate and sensitivity decreased, whilst the auto ignition temperature increased. The formulation containing 4% biuret over the batch was found to be the optimum with respect to energy, burning rate, pressure index, and sensitivity.
Źródło:
Central European Journal of Energetic Materials; 2014, 11, 1; 3-13
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Extrudable Gassy Pyrotechnic Time Delay Compositions
Autorzy:
Grobler, J. M.
Cowgill, A. W.
Focke, W. W.
Labuschagne, G.
Powiązania:
https://bibliotekanauki.pl/articles/358306.pdf
Data publikacji:
2018
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
polymer
burning rate
pyrotechnic
ignition time
Opis:
A copolymer of chlorotrifluoroethylene and vinylidene fluoride was investigated to assess its viability as an oxidiser, for aluminium as the fuel, in an extrudable pyrotechnic composition for application in 3D printing. Experimental results and EKVI thermochemical modelling suggested that a fuel loading of 30 wt.% would provide the maximum energy output. DTA and TGA analysis were performed in order to ascertain processing limits. With the addition of a processing aid LFC-1® samples could be extruded successfully. Printing with the compositions had limited success. The high melt viscosity paired with the filament’s susceptibility to excessive preheating caused the print quality to be low. Delamination did not occur due to good fusion achieved during layer deposition. With minor compositional adjustments printing quality could be improvedy.
Źródło:
Central European Journal of Energetic Materials; 2018, 15, 2; 299-314
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Mechanical Activation of Al/MoO3 Thermite as a Component of Energetic Condensed Systems to Increase Its Effciency
Autorzy:
Meerov, D.
Ivanov, D.
Monogarov, K.
Muravyev, N.
Pivkina, A.
Frolov, Y.
Powiązania:
https://bibliotekanauki.pl/articles/358816.pdf
Data publikacji:
2009
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
thermites
burning rate
nano-MoO3
Opis:
In the present work a stoichiometric energetic compositions Al+MoO3 prepared by dry mixing and by reactive milling of micro-scale particles were investigated. Morphology, particle size and surface structure of produced powders were examined using scanning electron microscopy, atomic-force microscopy, laser diffractometry and BET analysis. DSC/TG data were processed to obtain kinetic mechanism of the reaction between Al and MoO3. The combustion rate of Al+MoO3 thermite mixture increases with pressure, reaching a maximum at ~10 atm, and then decreases with further pressure increase. The rise of combustion rate at the low range of pressure is associated with the rise in the extent of the vapour phase penetrating the pores of the pressed sample as the ambient pressure increases. However, at a higher pressure the gas formation is suppressed, and the melt formed in the combustion process can selectively wet the pores resulting in inhibition of reaction. Burning rates of mechanical activated system Al+MoO3 are two times higher then not-activated system at ambient pressure ~10 atm and 8 times higher at ~40 atm. In additional experiments, nano-scale MoO3 powder was prepared by evaporation with a subsequent condensation onto cooled plate in an inert-gas fow. Scanning electron microscopy showed that nano-MoO3 particles are absolutely spherical with mean diameter ~100 nm, and atomic-force microscopy 278 D. Meerov et al. reveals smaller particles with mean diameter ~5-30 nm. DSC/TG data showed that the nano-MoO3 starts to sublime earlier than micro MoO3. The use of nano-sized components could considerably increase the burning rates of energetic condensed systems, because of its large specifc surface, lower temperature of sublimation, and high reaction ability.
Źródło:
Central European Journal of Energetic Materials; 2009, 6, 3-4; 277-289
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Combustion of Energetic Systems Based on HMX and Aluminum: Infuence of Particle Size and Mixing Technology
Autorzy:
Muravyev, N.
Frolov, Y.
Pivkina, A.
Monogarov, K.
Ivanov, D.
Meerov, D.
Fomenkov, I.
Powiązania:
https://bibliotekanauki.pl/articles/358822.pdf
Data publikacji:
2009
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
energetic systems
burning rate
HMX
aluminium
Opis:
In this work the complex experimental investigation of the microstructure and burning parameters of HMX-monopropellant and 25%Al/75%HMX energetic systems was carried on with the particle size variation. Components, their mixtures, pressed samples, and the combustion products (agglomerates) collected from a burning surface by QPCB (quench particle collection bomb) technique were investigated. Two types of HMX particles: micro-sized (mHMX) and ultrafne (uHMX) and aluminium powders: micro- and ultra-sized (ALEXTM) were used. Morphology and particle size were examined by atomic-force microscopy (AFM), scanning electron microscopy (SEM) and BET-analysis. AFM analysis shows the ALEXTM average volume particle size is 180 nm. It was shown, that the monopropellant's burning rates of the micro- and ultra-sized HMX are almost identical in the pressure range 20-100 atm. Two mixing technologies to prepare Al/HMX compositions were used: (i) conventional "dry" mixing and (ii) "wet" technique with ultrasonic processing in diethyl ether. Applying of ultrasonic technique results in a burning rate increase up to 18% comparing to "dry" mixing (under pressure 60 atm). The highest combustion rate was determined for composition of mHMX/ALEXTM (porosity 13%). Infuence of component N. Muravyev et al. size and composition's microstructure on the burning rate of energetic systems is discussed and analyzed.
Źródło:
Central European Journal of Energetic Materials; 2009, 6, 2; 195-210
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analysis of Uniaxial Tensile Tests for Homogeneous Solid Propellants under Various Loading Conditions
Autorzy:
Zalewski, R.
Wolszakiewicz, T.
Powiązania:
https://bibliotekanauki.pl/articles/358469.pdf
Data publikacji:
2011
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
solid propellants
experimental results
temperature
strain rate
Opis:
The main object of this paper is to reveal basic response of solid rocket fuels to different working conditions such as variable strain rates or temperature. Experimental data acquired during experimental tests is a base for development of a suitable constitutive model for homogeneous solid propellants. In the world literature there is still insuffcient information about typical mechanical features for considered materials. Universal standards for carrying out typical strength experiments have not yet been fully elaborated for this type of materials. Such problems as quasi-static strain range for solid propellants or so called scale effect are still not standardized. Though, this paper is a next step in preliminary investigation devoted to modeling of nonlinear properties of solid propellants. In particular, the infuence of temperature and strain rate on selected mechanical parameters variations is discussed.
Źródło:
Central European Journal of Energetic Materials; 2011, 8, 4; 223-231
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Investigation of an Aluminized Binder/AP Composite Propellant Containing FOX-7
Autorzy:
Florczak, B.
Powiązania:
https://bibliotekanauki.pl/articles/358557.pdf
Data publikacji:
2008
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
FOX-7
aluminized composite propellant
burning rate
Opis:
This paper presents the results of thermodynamical calculations and investigations of the thermochemical and balistic properties of aluminized composite solid propellants Binder/AP/A1 containing FOX-7. The calculation was conducted by using ICT-Thermodynamic Code. The heat of combustion was determined in a stationary bomb calorimeter IKA C 4000. The breakdown temperatures were taken with the DTA 551 Ex measuring apparatus and the burning rate was measured in a subscale rocket motor utilizing the ESAM v. 3.3.0 system. It was revealed that the introduction of FOX -7 into the propellant composition causes a reduction of the energetic characteristics and the burning rate of the propellant.
Źródło:
Central European Journal of Energetic Materials; 2008, 5, 3-4; 65-75
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Evaluation of Strontium Ferrite (SrFe12O19) in Ammonium Perchlorate-based Composite Propellant Formulations
Autorzy:
Jain, Sunil
Kshirsagar, Dhirendra R.
Khire, Vrushali H.
Kandasubramanian, Balasubramanian
Powiązania:
https://bibliotekanauki.pl/articles/358182.pdf
Data publikacji:
2019
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
composite propellant
strontium ferrite
pressure exponent
burning rate
Opis:
In the present work, various propellant compositions were prepared by incorporating strontium ferrite (SrFe12O19) in an ammonium perchlorate (AP), aluminium powder and hydroxyl-terminated polybutadiene (HTPB) based standard composite propellant. The compositions were then studied by assessing the effect of the SrFe12O19 content on the propellant slurry viscosity, and the mechanical and ballistic properties. The results showed that as the percentage of SrFe12O19 in the propellant was increased, the end of mix (EOM) slurry viscosity, tensile strength and E-modulus increased, while the elongation decreased. The ballistic properties data revealed that the burning rate of the propellant composition containing 1.0% SrFe12O19 was enhanced by around 15% (at 6.86 MPa) compared to the standard composition burning rate.
Źródło:
Central European Journal of Energetic Materials; 2019, 16, 1; 105-121
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Evaluation of Potassium Perchlorate as a Burning Rate Modifier in Composite Propellant Formulations
Autorzy:
Jain, S.
Mehilal, D.
Singh, P. P.
Bhattacharya, B.
Powiązania:
https://bibliotekanauki.pl/articles/358405.pdf
Data publikacji:
2016
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
composite propellant
burning rate
ammonium perchlorate
potassium perchlorate
Opis:
The burning rate of a solid composite propellant is one of its most important ballistic properties. To achieve a specified burning rate, transition metal oxides are used as burning rate modifiers. However, addition of transition metal oxides creates inertness in the composition. To avoid such inertness, an attempt has been made to incorporate potassium perchlorate (KP) as a burning rate modifier by partially replacing ammonium perchlorate (AP), up to the 10% level, and the composition was then studied in detail for its mechanical, thermal and ballistic properties. The data revealed that no change occurred in the case of the mechanical properties, however, the thermal stability decreased as the KP content was increased. The burning rate data revealed that on incorporation of 10% KP, there was an enhancement in the burning rate of up to 35% in comparison to the original composite propellant formulation, but beyond this no enhancement in burning rate was observed, indicating that the optimum content for KP in the composition had been reached.
Źródło:
Central European Journal of Energetic Materials; 2016, 13, 1; 231-245
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Composite Propellant Formulation of Poly (16-, 32- and 64-) Azido Dendritic Esters as Energetic Plasticizer and Evaluation of Properties
Autorzy:
Yamajala, Kanaka Durga Bhaskar
Singh, Hema
Kurva, Ramesh
Maurya, Mehilal
Banerjee, Shaibal
Powiązania:
https://bibliotekanauki.pl/articles/1062788.pdf
Data publikacji:
2020
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
azido dendrimers
energetic plasticizer
composite propellant
burning rate
Opis:
16-, 32- and 64-Polyazido hyperbranched dendrimers were synthesized from hydroxy terminated dendritic ester by following two steps namely, tosylation and azidation. The poly azido dendrimers were incorporated in composite propellant formulations as an energetic plasticizer. The physical, thermal sensitivity and ballistic properties of these composite propellants such as burning rate, Cal-val, density, ignition/decomposition temperature (AET), DSC-TGA, mechanical properties, impact and friction sensitivity were evaluated experimentally while the specific impulse (Isp) and characteristic velocity (C*) were obtained theoretically. A significant enhancement in heat release was noted in the propellant formulation having 16-azido dendritic ester as an energetic plasticizer compared to 32- and 64-azido dendritic esters and a reference composition.
Źródło:
Central European Journal of Energetic Materials; 2020, 17, 4; 506-522
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On a Certain Method of Determining the Burning Rate of Gun Propellant
Autorzy:
Leciejewski, Zbigniew
Surma, Zbigniew
Powiązania:
https://bibliotekanauki.pl/articles/358624.pdf
Data publikacji:
2019
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
ballistics
closed vessel test
gun propellant
burning rate
Opis:
The relation between the burning rate, r, of a solid propellant and the pressure, p, of gases surrounding the burning propellant surface is the basic component of the gas inflow equation. The applicability of a linear form of the burning rate law is limited only to those propellants for which the same pressure impulses, Ip, were obtained during closed vessel tests at different loading densities. To determine the values of the power form of the burning rate law it is necessary to know the values of the energetic and ballistic characteristics of the propellant. In this paper, a method is presented for determining the relation r(p) for which the only input data are the pressure, p(t), of the propellant gases recorded during closed vessel tests (only for a single specific loading density) and information on the shape and geometric dimensions of the propellant grains. An analysis of the possibility of applying the proposed method, through examples of single-base, double-base and multi-base propellants with neutral and progressive characteristics of burning surface changes, was carried out for the purposes of the present study. The qualitative and quantitative results of burning rate analyses prove the validity of the assumptions made.
Źródło:
Central European Journal of Energetic Materials; 2019, 16, 3; 433-448
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Studies on the Effect of Nano-MnO2 in HTPB-based Composite Propellant Formulations
Autorzy:
Kshirsagar, D. R.
Jain, S.
Bhandarkar, S.
Vemuri, M.
Mehilal, -
Powiązania:
https://bibliotekanauki.pl/articles/951478.pdf
Data publikacji:
2017
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
composite propellant
nano-manganese dioxide
pressure exponent
burning rate
Opis:
Various propellant compositions were prepared incorporating fully characterized nano-sized manganese dioxide, from 0.25 wt.% to 1.0 wt.%, in HTPB/AP/Al-based composite propellant formulations having 86 wt.% of solid loading, and its effects on the viscosity build-up, thermal, mechanical and ballistic properties were studied. The findings revealed that on increasing the percentage of nano-MnO2 in the composition, there was an increase in the end of mix viscosity, the modulus and tensile strength, while the elongation decreased accordingly. The data on the thermal properties revealed a reduction in the decomposition temperature of ammonium perchlorate (AP) as well as of the formulations based on it. The data on the ballistic properties revealed that there is an enhancement in the burning rate from 6.11 mm/s (reference composition) to 7.54 mm/s at 6.86 MPa (a 23% enhancement in the burning rate) and an increase in the pressure exponent from 0.35 (reference composition) to 0.42 with 1.0 wt.% nano-MnO2.
Źródło:
Central European Journal of Energetic Materials; 2017, 14, 3; 589-604
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Combustion Mechanism and Kinetics of Thermal Decomposition of Ammonium Chlorate and Nitrite
Autorzy:
Sinditskii, V. P.
Egorshev, V. Yu.
Powiązania:
https://bibliotekanauki.pl/articles/357948.pdf
Data publikacji:
2010
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
ammonium chlorate
ammonium nitrite
combustion mechanism
decomposition
rate constant
Opis:
Combustion data of ammonium chlorate and nitrite have been analyzed. The leading reactions of combustion of both NH4ClO3 and NH4NO2 at low pressures have been shown to proceed in the condensed phase, with the burning rate defned by the decomposition kinetics at the surface temperature. The kinetics of NH4ClO3 and NH4NO2 decomposition have been calculated by using a condensed-phase combustion model.
Źródło:
Central European Journal of Energetic Materials; 2010, 7, 1; 61-75
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Mathematical Formulation and Validation of Muraours Linear Burning Rate Law for Solid Rocket Propellants
Autorzy:
Shekhar, H.
Powiązania:
https://bibliotekanauki.pl/articles/358152.pdf
Data publikacji:
2012
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
rocket propellants
burning rate
pressure index
ballistics prediction
Muraour's
Opis:
Linear variation of burning rate with pressure (burning rate, r = H + Sp), referred in the literature as Muraour's law, is adopted as the burning rate law for solid rocket propellants. The two constants 'H' and 'S' are the vacuum burning rate and the slope of burning rate variation, respectively. The conventional power law of the burning rate, r = apn, is also analyzed and its practical, anomalous behaviour such as zero burning rate at zero pressure, the reduction in pressure sensitivity of the burning rate at higher pressures, the lower burning rate for the high pressure index in typical situations etc, are explained with illustrations. Like the conventional power law of burning rate, the linear burning rate law considered here is also empirical but mathematically simpler than the power law. Using burning rate and pressure data from various literature sources similar regression coefficients are observed for the conventional power law as well as for the alternative linear burning rate law. The mathematical concept for the evolution of the pressure time profile with the considered linear burning rate law is developed and validated practically with the actual firing of rocket propellants as uninhibited, tubular configurations in a ballistic evaluation motor (BEM). Close matching of the firing curve, predicted by the conventional power law and by the proposed linear burning rate law validates the mathematical formulation. The considered linear burning rate law is simple, easy to apply and gives a better representation of the burning rate behaviour of solid rocket propellants.
Źródło:
Central European Journal of Energetic Materials; 2012, 9, 4; 353-364
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Advantages and Shortcomings of Using Nano-sized Energetic Materials
Autorzy:
Zohari, N.
Keshavarz, M. H.
Seyedsadjadi, S. A.
Powiązania:
https://bibliotekanauki.pl/articles/358244.pdf
Data publikacji:
2013
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
energetic compounds
nanosized particles
sensitivity
burn
rate
thermal stability
Opis:
Energetic materials are substances that can store chemical energy in their chemical bonds. An ideal energetic material is a substance with high performance, safety and shelf life. Many recent researches have concentrated on the synthesis or the development of new energetic materials with optimized properties, such as thermal stability, sensitivity and burn rate. The reduction of the particle size of energetic materials from micron to nano-sized is one of the suitable approaches for obtaining desirable properties. Recent progress on the reduction of the particle size of energetic materials is reviewed in this work. The effects of nano-sized particles on the performance of energetic compounds are also investigated.
Źródło:
Central European Journal of Energetic Materials; 2013, 10, 1; 135-147
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Study of the Effect of Nitrated Hydroxyl-terminated Polybutadiene (NHTPB) on the Properties of Heterogeneous Rocket Propellants
Autorzy:
Florczak, B.
Bogusz, R.
Skupiński, W.
Chmielarek, M.
Dzik, A.
Powiązania:
https://bibliotekanauki.pl/articles/358481.pdf
Data publikacji:
2015
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
NHTPB
HTPB
heterogeneous solid rocket propellant
linear burning rate
Opis:
This paper presents results from research concerning the effect of nitrated hydroxyl-terminated polybutadiene (NHTPB), content up to 3%, on the physicochemical, physico-mechanical and ballistic properties of heterogeneous rocket propellants based on hydroxyl-terminated polybutadiene (HTPB), ammonium perchlorate (AP) and aluminium powder. The results of research on the rheological and thermal properties of the tested solid rocket propellants are also presented. These studies have shown that 2% rubber NHTPB, contained within a composite solid propellant, increases the energy and ballistic parameters of the propellant.
Źródło:
Central European Journal of Energetic Materials; 2015, 12, 4; 841-854
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies