Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "High pressure" wg kryterium: Temat


Wyświetlanie 1-6 z 6
Tytuł:
Examination of High-Pressure Water Jet Usability for High Explosives (HE) Washing Out from Artillery Ammunition
Autorzy:
Borkowski, P.
Borkowski, J.
Woźniak, D.
Maranda, A.
Powiązania:
https://bibliotekanauki.pl/articles/358851.pdf
Data publikacji:
2008
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
high-pressure water jet
explosive material
artillery ammunition
Opis:
The method of explosives materials washing-out process from old artillery ammunition using high-pressure water jet technology was discussed in the paper. Presented experimental results let to define explosives washing-out mechanism and its potential effectiveness. Finally, exemplary structures of washedout explosives pointing on methods of its utilization are presented.
Źródło:
Central European Journal of Energetic Materials; 2008, 5, 2; 21-35
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Development of a Composite Propellant Formulation with a High Performance Index Using a Pressure Casting Technique
Autorzy:
Ramesh, K.
Jawalkar, S. N.
Sachdeva, S.
Bhattacharya, B.
Powiązania:
https://bibliotekanauki.pl/articles/358322.pdf
Data publikacji:
2012
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
composite propellant
high density
high performance index
pressure casting
solid loading
Opis:
There is a continuous demand for high performance composite propellant formulations to meet future requirements. The performance of composite propellant formulations can be enhanced by the addition of energetic oxidizers, like ADN/HNF as well as an energetic binder & a plasticizer. However, on incorporation of energetic ingredients, the composition becomes sensitive, and thus processing, handling and transportation pose a greater threat. Therefore, a moderately high burn rate composition having a burn rate ~ 13-14 mmźs -1 at 7000 kPa was tailored by increasing the solid loading of the propellant from 85.15% to 87.27% with the help of ammonium perchlorate and process aids without affecting the burn rate and mechanical properties. The tailored composition was studied for different properties such as end of mix viscosity, density, mechanical & ballistic properties. The evaluated data reveal that the end of mix viscosity of the tailored composition is higher than the base composition, i.e., 672 Paźs and 2340 Paźs at the same temperature; however, this viscosity was castable using a pressure casting technique. The properties of the cured propellant reveal that there is an enhancement of density from 1.74 gźcm -3 to 1.79 gźcm -3 with no other changes in mechanical properties. The performance index of the tailored composition has been increased from 416 to 437, well supported by results of ballistic evaluation motors of 2 kg.
Źródło:
Central European Journal of Energetic Materials; 2012, 9, 1; 49-58
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Rate of the energy release in high explosives containing nano-size boron particles
Autorzy:
Kanel, G. I.
Utkin, A. V.
Razorenov, S. V.
Powiązania:
https://bibliotekanauki.pl/articles/358923.pdf
Data publikacji:
2009
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
high explosive
HMX
boron
manganin pressure gauges
VISAR
Chapman-Jouget point
Opis:
With a goal to obtain information on rate of the high explosive decomposition and equation of state of the HE formulations and detonation products, measurements of the pressure and particle velocity profiles of shock and detonation waves have been performed for pure coarse-grain and fine-grain HMX and for the HMX+16.4% boron mixture. For these measurements, the manganin pressure gauges and the laser Doppler velocimeter VISAR were applied. Effect of boron in the energy release process was observed both in the detonation and shock-wave initiation regimes.
Źródło:
Central European Journal of Energetic Materials; 2009, 6, 1; 15-30
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Detonation Performance of Oxygen-rich Trinitromethylsubstituted Pyrazoles: an in-silico Investigation
Autorzy:
Naithani, N.
George, B. K.
Powiązania:
https://bibliotekanauki.pl/articles/358132.pdf
Data publikacji:
2018
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
nitropyrazole
aminonitropyrazoles
detonation velocity
detonation pressure
density functional theory
high energy molecules
Opis:
A new class of high energy molecules was designed and their detonation properties were evaluated using thermo-chemical parameters obtained from quantum chemical calculations at B3LYP/6-31G(d,p) level. The designed molecules exhibited high density, positive oxygen balance and excellent detonation properties. The impact sensitivity of these molecules, in terms of H50 values, was also evaluated from structural correlations. Among these, 3,4,5-tris(trinitromethyl)1H-pyrazol-1-amine (N13) showed the highest detonation pressure (40.67 GPa) and highest detonation velocity (9.17 km/s), though it exhibited high impact sensitive (H50 = 15 cm). Interestingly, 4,5-dinitro-3-(trinitromethyl)-1H-pyrazol-1-amine (N01) (detonation pressure 39.69 GPa; detonation velocity 9.23 km/s) was found to be an ideal high energy molecule with a near zero oxygen balance. The H50 value of N01 was predicted to be 64 cm, which is higher in magnitude, indicating a lower sensitivity than that of the conventionally used RDX (H50 = 26 cm).
Źródło:
Central European Journal of Energetic Materials; 2018, 15, 4; 537-533
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Calculation of Thermochemical and Explosive Characteristics of Furoxanes
Autorzy:
Zhukov, I.
Kozak, G. D.
Powiązania:
https://bibliotekanauki.pl/articles/358541.pdf
Data publikacji:
2008
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
furoxanes
benzofuroxanes
high-power energetic materials
heat of detonation
detonation velocity
detonation pressure
Opis:
Search of high-power energetic materials is one primary line of development of chemical physics of combustion and explosion. Yield of such materials is usually very small, and its cost is very high. Calculation of unknown characteristics and properties is the only way out from this situation. There are different methods today that allow calculating unknown detonation performance and some of physicochemical properties. Examination of calculated detonation performance of furoxanes and benzofuroxanes compounds that are not enough investigated is presented in this work. These compounds are new high-power energetic materials. Influence of error in enthalpy of formation of these compounds on their detonation performance is also examined in this work. Furoxanes plays particular part among energetic materials. They are convenient blocks of molecules of high-power energetic materials. Joining of explosiphorus clusters of atoms are lead to obtaining of number of high-performance compounds. It is caused by flatten structure of furoxane ring, that lead to high density of compounds and are characterized by high and positive value of enthalpy of formation. Detonation performance of furoxanes was not study practically. That is why 10 furoxanes have been chosen as object of study (see Nomenclature). 7 of 10 studied furoxanes have anomalous elemental composition, because they are hydrogenfree. In order to evaluate possible error in computational detonation performance, explosive characteristics of 6 hydrogen-free energetic materials with known experimental data have been calculated.
Źródło:
Central European Journal of Energetic Materials; 2008, 5, 3-4; 45-54
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A Novel Method for Dynamic Pressure and Velocity Measurement Related to a Power Cartridge Using a Velocity Test Rig for Water-Jet Disruptor Applications
Autorzy:
Parate, Bhupesh Ambadas
Salkar, Yogesh Balkrishna
Chandel, Sunil
Shekhar, Himanshu
Powiązania:
https://bibliotekanauki.pl/articles/357922.pdf
Data publikacji:
2019
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
power cartridge
data acquisition
double base propellant
high speed photography
projectile velocity
pressure
propellant
projectile
standard deviation
water-jet disruptor
velocity test rig
Opis:
Power cartridges are gas generators utilised to drive a liquid projectile for disruption of suspect improvised explosive devices (IED’s). The purpose of a water-jet disruptor is to destroy the suspected IED. A novel method was devised for pressure measurement at the exit of the cartridge for launching liquid projectile. An experimental test set-up was designed and fabricated for measurement of projectile velocity and the propellant gas pressure in a velocity test rig (VTR). In these experiments, double base propellants having different physical and chemical properties were utilised to drive the solid projectile. This projectile was made of nylon material. This projectile velocity measurement is an important parameter in the armament field. An experimental study is the unique design feature. It is responsible for the measurement of pressure at the exit of the cartridge and the projectile velocity at the muzzle end of the barrel. The projectile velocity was measured using high speed photography. The pressure was measured using a pressure sensor. The maximum projectile velocities for spherical ball powder and NGB 051 propellants have been experimentally measured as 384.23 m/s and 418.32 m/s, respectively. Experimentally the maximum pressures for spherical ball powder and NGB 051 propellants have been evaluated as 50.12 MPa and 63 MPa respectively from data gathered by the acquisition system. The standard deviation between the experimental and theoretical values for the projectile velocity varied from 12.57 to 13.88 for spherical ball powder whereas it was 5.33 to 7.09 for NGB 051 propellant. The percentage error between the experimental and the theoretical values of the projectile velocity was less than 10 for both propellants.
Źródło:
Central European Journal of Energetic Materials; 2019, 16, 3; 319-342
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-6 z 6

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies