Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Li, S. Y." wg kryterium: Autor


Wyświetlanie 1-12 z 12
Tytuł:
Research on the Mechanical Properties and Curing Networks of Energetic GAP/TDI Binders
Autorzy:
Ma, S.
Li, Y.
Li, G.
Luo, Y.
Powiązania:
https://bibliotekanauki.pl/articles/358300.pdf
Data publikacji:
2017
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
glycidyl azide polymer (GAP)
curing networks
hydrogen bonding
entanglement
integrity
Opis:
This research focused on correlations between the macroscopic mechanical performance and microstructures of energetic binders. Initially a series of glycidyl azide polymer (GAP)/toluene diisocyanate (TDI) binders, catalyzed by a mixture of dibutyltin dilaurate (DBTDL) and triphenyl bismuth (TPB), was prepared. Uniaxial tensile testing, and low-field nuclear magnetic resonance and infrared spectroscopy were then used to investigate the mechanical properties, curing networks, and hydrogen bonding (H-bonds) of these binders. Additionally, a novel method based on the molecular theory of elasticity and the statistical theory of rubber elasticity was used to analyze the integrity of the networks. The results showed that the curing parameter R strongly influences the mechanical properties and toughness of the binders, and that a tensile stress (σm) of 1.6 MPa and an elongation (εm) of 1041% was observed with an R value of 1.6. The cross-linking density increased sharply with the curing parameter, but only modestly with an R value ≥ 1.8. The proportion of H-bonds formed by the imino groups increased with the R value and reached 72.61% at an R value of 1.6, indicating a positive correlation between the H-bonds and σm. Molecular entanglement was demonstrated to increase with R and to contribute dramatically to the mechanical performance. The integrity of these networks, evaluated by a correction factor (A), varies with R, and a network of the GAP/TDI binder with an R value of 1.6 is desirable.
Źródło:
Central European Journal of Energetic Materials; 2017, 14, 3; 708-725
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An investigation of the preparation and performance of microcellular combustible material
Autorzy:
Yang, W.
Li, Y.
Ying, S.
Powiązania:
https://bibliotekanauki.pl/articles/358391.pdf
Data publikacji:
2014
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
microcellular combustible material
supercritical CO2
pressure quench method
vulnerability behaviour
closed vessel test
Opis:
Microcellular combustible materials, based on poly(methyl methacrylate) (PMMA) bonded RDX, were fabricated by the pressure quench method using supercritical CO2. After foaming, the bulk density, porosity, expansion ratio and cell density were analyzed. Scanning Electron Microscopy (SEM) has also been used to investigate the influence of the foaming conditions (temperature, saturation pressure and depressurization time) and the RDX ratio on the porous structure. The skin-core structure was also observed after the pressure quench process. The mechanical sensitivities and burning performance were investigated by the friction sensitivity test, the impact sensitivity test and the closed vessel test, respectively.
Źródło:
Central European Journal of Energetic Materials; 2014, 11, 2; 257-269
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Measurement of the Heat of Reaction of Polytetrafluoroethylene/Aluminum Composites Based on Laser Initiation
Autorzy:
Li, S.
Wu, Y.
Lin, Q.
Huang, C.
Yang, S.
Li, J.
Powiązania:
https://bibliotekanauki.pl/articles/358195.pdf
Data publikacji:
2017
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
reactive materials
PTFE/Al composites
heat of reaction
laser initiation
Opis:
Polytetrafluoroethylene/aluminum (PTFE/Al) composites are reactive materials which can release energy due to exothermic chemical reactions initiated under shock loading conditions. In order to accurately measure the potential maximum heat of reaction of PTFE/Al composites in an inert atmosphere, we propose in this paper a heat of reaction measurement system based on laser initiation. Our results show that the measurement system successfully initiates the chemical reaction between PTFE and Al in an argon atmosphere. The comparison between theoretical calculations and experimental data demonstrates that our measurement method is highly accurate and exhibits excellent consistency. Thus, the heat of reaction measurement system based on laser initiation is applicable for measuring the heat of reaction of PTFE/Al composites and also other complicated reactive materials.
Źródło:
Central European Journal of Energetic Materials; 2017, 14, 3; 534-546
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Synthesis and Property of 1,4-Diamino-3,6- dinitropyrazolo[4,3-c]pyrazole and Its Derivatives
Autorzy:
Li, Y.-N.
Wang, B.-Z.
Shu, Y.-J.
Zhang, S.-Y.
Lian, P.
Powiązania:
https://bibliotekanauki.pl/articles/358674.pdf
Data publikacji:
2016
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
3,6-dinitropyrazolo[4,3-c]pyrazole (DNPP)
1,4-diamino-3,6- dinitropyrazolo[4,3-c]pyrazole (DADNP)
4,4’-(triaz-1-ene-1,3-diyl)bis(1- amine-3,6-dinitropyrazolo[4,3-c]pyrazole) (TBADNP)
N-amination reaction
synthesis
property
Opis:
A synthetic procedure has been developed for the synthesis of 1,4-diamino- 3,6-dinitropyrazolo[4,3-c]pyrazole (DADNP) via N-amination reaction. Its derivatives, 4,4’-(triaz-1-ene-1,3-diyl)bis(1-amine-3,6-dinitropyrazolo[4,3-c] pyrazole) (TBADNP) and 1,4-dinitramino-3,6-dinitropyrazolo[4,3-c]pyrazole (DNADNP), were first designed and synthesized by the diazotization and nitrification of amino group, and their structures were characterized by IR, 1H NMR, 13C NMR, elementary analysis and MS. The thermal properties of target compounds were studied by means of differential scanning calorimetry (DSC) and thermogravimetry (TG). The thermal decomposition peak temperatures of DADNP, TBADNP and DNADNP are 227, 236 and 288 °C, respectively. Results show that the derivatives of 1,4-diamino-3,6-dinitropyrazolo[4,3-c]pyrazole have better thermal stability.
Źródło:
Central European Journal of Energetic Materials; 2016, 13, 2; 321-331
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Three Insensitive Energetic Co-crystals of 1-Nitronaphthalene, with 2,4,6-Trinitrotoluene (TNT), 2,4,6-Trinitrophenol (Picric Acid) and D-Mannitol Hexanitrate (MHN)
Autorzy:
Hong, D.
Li, Y.
Zhu, S.
Zhang, L.
Pang, C.
Powiązania:
https://bibliotekanauki.pl/articles/1063066.pdf
Data publikacji:
2015
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
co-crystal
insensitive energetic material
crystal structure
explosive properties
Opis:
Co-crystallization is proposed as an effective method to alter the physicochemical properties of energetic materials, e.g. density, sensitivity and solubility. As reported in this paper, it was found that 1-nitronaphthalene could form cocrystals with TNT, picric acid and MHN in a 1:1 molecular ratio. The sensitivity and thermal stability of the 1-nitronaphthalene co-crystals was greatly improved compared with that of pure TNT, picric acid and MHN. In addition, the melting points of TNT, picric acid and MHN were lowered through co-crystallization with 1-nitronaphthalene. The electrostatic potential surface of 1-nitronaphthalene, calculated by the DFT method, showed that the electron-rich 1-nitronaphthalene has a tendency to be a proton donor and to co-crystallize with other energetic materials. The structures of the co-crystals of 1-nitronaphthalene with TNT and picric acid were characterized by single crystal X-ray diffraction (SXRD). The 1-nitronaphthalene/MHN co-crystal was studied by powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC) and FTIR.
Źródło:
Central European Journal of Energetic Materials; 2015, 12, 1; 47-62
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Synthesis, Structure and Energetic Properties of a Catenated N6, Polynitro Compound: 1,1’-Azobis(3,5-dinitropyrazole)
Autorzy:
Li, Y.-N.
Shu, Y.-J.
Wang, Y.-L.
Wang, B.-Z.
Zhang, S.-Y.
Bi, F.-Q.
Powiązania:
https://bibliotekanauki.pl/articles/358573.pdf
Data publikacji:
2017
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
energetic compound
1,1’-azobis(3,5-dinitropyrazole)
synthesis
energetic properties
Opis:
A nitrogen-rich, polynitro energetic compound with an N,N-azo linkage, 1,1’-azobis(3,5-dinitropyrazole) (ABDNP), has been synthesized by an oxidative coupling reaction of 1-amino-3,5-dinitropyrazole with different oxidizing agents. The target compound was characterized by IR spectroscopy, 1H and 13C nuclear magnetic resonance spectroscopy, elemental analysis, mass spectra, X-ray diffraction and differential scanning calorimetry (DSC). The DSC results show that 1,1’-azobis(3,5-dinitropyrazole) decomposes at a relatively high onset temperature (202.9 °C), which indicates that 1,1’-azobis(3,5-dinitropyrazole) has acceptable thermal stability. The energetic properties were obtained, with a measured density and heat of formation matched by theoretically computed values based on the B3LYP method.
Źródło:
Central European Journal of Energetic Materials; 2017, 14, 2; 321-335
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Dft investigation of a high energy density polynitro compound, 2,2’-Bis(trinitromethyl)-5,5’-azo-1,2,3,4- tetrazole
Autorzy:
Lin, H.
Zhu, S. G.
Chen, P. Y.
Li, K.
Li, H. Z.
Peng, X. H.
Powiązania:
https://bibliotekanauki.pl/articles/358030.pdf
Data publikacji:
2013
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
polynitro
electronic structure
thermodynamic properties
crystal structure
detonation performance
stability
Opis:
A novel polynitro compound, 2,2’-bis(trinitromethyl)-5,5’-azo- 1,2,3,4-tetrazole, was designed and investigated at the DFT-B3LYP/6-31G(d) level. Its properties, such as electronic structure, IR spectrum, heat of formation, thermodynamic properties and crystal structure, were predicted. This compound is most likely to crystallize in the P21 space group, and the corresponding cell parameters are Z = 2, a = 5.46 Å, b = 9.72 Å, c = 14.05 Å, α = 90°, β = 90°, γ = 90°. In addition, the detonation velocity and pressure were also estimated by using the empirical Kamlet-Jacobs equations, and were predicted to be 8.28 km/s and 31.61 GPa respectively. The oxygen balance of this compound is +13.79%, which indicates that it could serve as an oxidizer. Bond dissociation energy calculations show that the C(13)-N(21)O2 and C(14)-N(30)O2 bonds are the locations of thermal decomposition and that this compounds meets the thermal stability requirements as an exploitable explosive. Keywords: polynitro, electronic structure, thermodynamic properties, crystal structure, detonation performance, stability.
Źródło:
Central European Journal of Energetic Materials; 2013, 10, 3; 325-338
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Thermally Induced Polymorphic Transformation of Hexanitrohexaazaisowurtzitane (HNIW) Investigated by in-situ X-ray Powder Diffraction
Autorzy:
Liu, Y.
Li, S.
Wang, Z.
Xu, J.
Sun, J.
Huang, H.
Powiązania:
https://bibliotekanauki.pl/articles/358065.pdf
Data publikacji:
2016
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
HNIW
polymorphism
in situ X-ray diffraction
phase transition
heat stimulation
Opis:
The ε→γ phase transition of HNIW induced by heat was investigated with in situ X-ray powder diffraction (PXRD). The effects of purity, particle size, insensitive additives and the time of isothermal heat treatment on the phase transition were evaluated. It was found that the phase transition is irreversible with changes in temperature, and the two phases can coexist in a certain temperature range. Moreover, the initial phase transition temperature increases with increasing purity and decreasing particle size of HNIW, and thus with the approximate crystal density. The addition of graphite and paraffin wax to HNIW as insensitive additives leads to a decrease in the initial phase transition temperature, but the addition of TATB does not affect the initial phase transition temperature. Thus, TATB is a suitable insensitive additive. Moreover, at the critical temperature, the isothermal time determined the efficiency of the ε- to γ-phase transition. This work lays the foundations for the choice of molding technologies, performance test methods, ammunition storage options, as well as the manufacture of HNIW-based explosive formulations.
Źródło:
Central European Journal of Energetic Materials; 2016, 13, 4; 1023-1037
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Influence of Polytetrafluorethylene on the Mechanical and Safety Properties of a Composite Modified Double Base Propellant
Autorzy:
Sun, S.
Zhang, T.
Zhao, B.
Zhang, G.
Li, X.
Luo, Y.
Powiązania:
https://bibliotekanauki.pl/articles/358296.pdf
Data publikacji:
2018
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
PTFE fibres
CMDB propellant
mechanical properties
mechanical sensitivity
combustion
Opis:
A novel Composite Modified Double Base (CMDB) propellant, formed by mechanically mixing aluminium/polytetrafluorethylene (Al/PTFE) powders, was prepared through a rolling process. A variety of tests, such as tensile properties, particle size analysis etc., were carried out to study the influence of PTFE on the CMDB propellant properties. The PTFE deformed from particles to fibres under a uniform shear force, forming a fibre network which greatly improved the propellant’s mechanical properties. Compared to that of the CMDB propellant without PTFE, the elongation of the propellant containing 6% PTFE was increased by 26 times, and moreover, the impact strength was enhanced by 326% at −40 °C. Significantly, the propellant friction and impact sensitivities were reduced by 75.8% and 35.6%, respectively. In addition, the presence of PTFE in the propellant resulted in fluorination of the Al. The gaseous combustion product AlF3 reduced the propellant combustion agglomeration. Consequently, PTFE significantly promoted the propellant’s mechanical performance, decreased the shock (friction, impact) sensitivity and reduced combustion agglomeration.
Źródło:
Central European Journal of Energetic Materials; 2018, 15, 3; 468-484
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Reinforcement of the TNT System by a Newly-designed GAP-based Polyurethane-Urea: a Molecular Simulation Investigation
Autorzy:
Qian, W.
Shu, Y.
Ma, Q.
Li, H.
Wang, S.
Chen, X.
Powiązania:
https://bibliotekanauki.pl/articles/358512.pdf
Data publikacji:
2016
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
TNT
GAP
polyurethane-urea
inter-molecular interaction
mechanical properties
Opis:
A glycidyl azide (GAP)-based polyurethane-urea (PUU) modifier used in the 1,3,5-trinitrotoluene (TNT)-based composite explosive was investigated by molecular simulation. Inter-molecular interactions were investigated using quantum chemistry calculation on the dimer of TNT and GAP-PUU, and attractive forces were found between the two molecules. The cohesive energy densities and the solubility parameters were obtained through molecular dynamics simulations combined with thermodynamic calculations on the TNT and GAP-PUU amorphous cell models, and the miscibility of the modifier in molten TNT was predicted to be good. The interaction energies and the mechanical properties were then obtained by molecular simulations and mechanical calculations on the solid-phase models of the GAP-PUU with TNT along three crystalline directions, and an improvement in the mechanical properties was predicted.
Źródło:
Central European Journal of Energetic Materials; 2016, 13, 2; 411-426
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Influence of Processing Techniques on Mechanical Properties and Impact Initiation of an Al-PTFE Reactive Material
Autorzy:
Feng, B.
Fang, X.
Li, Y.-C.
Wu, S.-Z.
Mao, Y.-M.
Wang, H.-X.
Powiązania:
https://bibliotekanauki.pl/articles/358654.pdf
Data publikacji:
2016
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
Al-PTFE
reactive materials
quasi-static compression
impact initiation
Opis:
Reactive materials (RMs) or impact-initiated materials have received much attention as a class of energetic materials in recent years. To assess the influence of processing techniques on mechanical properties and impact initiation behaviors of an Al-PTFE reactive material, quasi -static compression tests and drop-weight tests were performed. Scanning electron microscopy (SEM) was used to identify the characteristics of the interior microstructures of the Al-PTFE samples. A sintering process was found to transform Al-PTFE from a brittle to a ductile material with an increased elasticity modulus (from 108-160 MPa to 256-336 MPa) and yield stress (from 12-16 MPa to 19-20 MPa). Increasing the molding pressure from 36 MPa to 182 MPa increased the elastic modulus of all Al-PTFE samples and also the yield stress of unsintered ones. Unsintered samples in general required less energy to initiate than sintered ones. As the molding pressure increased, the impact initiation energy for sintered Al-PTFE fell from 96 J to 68 J, whereas the initiation energy for unsintered Al-PTFE rose from 68 J to 85 J. PTFE nanofiber networks observed in sintered samples formed under the higher molding pressures could contribute to the opposite trends observed in the impact initiation energy of unsintered and sintered Al-PTFE samples.
Źródło:
Central European Journal of Energetic Materials; 2016, 13, 4; 989-1004
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Different Ignition Responses of Powdery and Bulky 1,3,5-Triamino-2,4,6-trinitrobenzene (TATB) Based Polymer-bonded Explosives under Ultra-high Voltage Electrostatic Discharge
Autorzy:
Lyu, Z.
Long, X.
Li, Z.
Dai, X.
Deng, C.
He, S.
Li, M.
Yao, K.
Wen, Y.
Powiązania:
https://bibliotekanauki.pl/articles/358240.pdf
Data publikacji:
2018
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
electrostatic spark sensitivity
ultra-high voltage electrostatic discharge
thermal effect
electric field effect
Opis:
The electric spark induced ignition mechanism for explosives needs further study. The ignition of powdery and bulky TATB by electrostatic discharge (ESD) was investigated. Up to 200 kV ultra-high voltage ESD was applied to powdery and bulky explosives of two TATB-based polymer-bonded explosives (named PBX-1 and PBX-2). The results showed that the spark sensitivities of powdery and bulky explosives are extremely different for the same formulation. The 50% ignition voltages of powdery PBX-1 and PBX-2 were 10.8 kV and 8.5 kV, respectively, while the values for the bulky samples (tablets) were not less than 200 kV. Both heat and the electric field can be transmitted into the powdery samples, on the other hand only the electric field can be transmitted into the bulk samples. The electric field has a smaller contribution while the heat has a larger contribution to the ignition during an ESD, i.e., the thermal effect plays a main role in the ignition process. Our experimental results are in good agreement with recent results calculated by density functional theory.
Źródło:
Central European Journal of Energetic Materials; 2018, 15, 2; 283-298
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-12 z 12

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies