Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Li, G.-Y." wg kryterium: Autor


Wyświetlanie 1-6 z 6
Tytuł:
Research on the Mechanical Properties and Curing Networks of Energetic GAP/TDI Binders
Autorzy:
Ma, S.
Li, Y.
Li, G.
Luo, Y.
Powiązania:
https://bibliotekanauki.pl/articles/358300.pdf
Data publikacji:
2017
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
glycidyl azide polymer (GAP)
curing networks
hydrogen bonding
entanglement
integrity
Opis:
This research focused on correlations between the macroscopic mechanical performance and microstructures of energetic binders. Initially a series of glycidyl azide polymer (GAP)/toluene diisocyanate (TDI) binders, catalyzed by a mixture of dibutyltin dilaurate (DBTDL) and triphenyl bismuth (TPB), was prepared. Uniaxial tensile testing, and low-field nuclear magnetic resonance and infrared spectroscopy were then used to investigate the mechanical properties, curing networks, and hydrogen bonding (H-bonds) of these binders. Additionally, a novel method based on the molecular theory of elasticity and the statistical theory of rubber elasticity was used to analyze the integrity of the networks. The results showed that the curing parameter R strongly influences the mechanical properties and toughness of the binders, and that a tensile stress (σm) of 1.6 MPa and an elongation (εm) of 1041% was observed with an R value of 1.6. The cross-linking density increased sharply with the curing parameter, but only modestly with an R value ≥ 1.8. The proportion of H-bonds formed by the imino groups increased with the R value and reached 72.61% at an R value of 1.6, indicating a positive correlation between the H-bonds and σm. Molecular entanglement was demonstrated to increase with R and to contribute dramatically to the mechanical performance. The integrity of these networks, evaluated by a correction factor (A), varies with R, and a network of the GAP/TDI binder with an R value of 1.6 is desirable.
Źródło:
Central European Journal of Energetic Materials; 2017, 14, 3; 708-725
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Insensitive HMX (Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) Nanocrystals Fabricated by High-Yield, Low-Cost Mechanical Milling
Autorzy:
Wang, Y.
Jiang, W.
Song, X.
Deng, G.
Li, F.
Powiązania:
https://bibliotekanauki.pl/articles/358912.pdf
Data publikacji:
2013
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
nanoexplosives
HMX
thermal decomposition
sensitivity
Opis:
A mechanical approach had been adopted for fabricating HMX nanoparticles. This fabrication method avoided the recrystallization process and was different from the traditional methods employed to prepare nanoexplosives. In particular, the high yield and low cost increased the possibility of its industrial application. Specifcally, HMX particles, that had a mean size of 0.27 μm, were prepared by mechanical milling; a signifcant proportion of nano-HMX (<100 nm) were present and these were observed by TEM and SEM images. The thermal decomposition of HMX samples before and after pulverization was investigated by TG/DSC analysis. The results indicated that there was no obvious difference between the thermographs of raw and pulverized HMX. The HMX samples were investigated by friction, impact, and shock sensitivity tests. High safety was confrmed since pulverized HMX was far more insensitive than raw HMX; indeed the shock sensitivity of pulverized HMX was about 60 percent lower than that of raw HMX.
Źródło:
Central European Journal of Energetic Materials; 2013, 10, 2; 277-287
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A Facile Synthesis of 3,3'-Dinitro-5,5'-diamino-bi-1,2,4-triazole and a Study of Its Thermal Decomposition
Autorzy:
Ma, Q.
Lu, H.
Qu, Y.
Liao, L.
Li, J.
Fan, G.
Chen, Y.
Powiązania:
https://bibliotekanauki.pl/articles/358272.pdf
Data publikacji:
2017
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
3,3’-dinitro-5,5’-diamino-bi-1,2,4-triazole
facile synthesis
DSC-TG
RSFTIR
TG-IR
thermolysis
Opis:
3,3’-Dinitro-5,5’-diamino-bi-1,2,4-triazole (DABNT) was synthesized by a facile method and its crystalline density was determined as 1.839 g·cm−3 at 293(2) K by X-ray diffraction. Its thermal decomposition kinetics and mechanism were studied by means of differential scanning calorimetry-thermogravimetry (DCS-TG), in situ thermolysis by rapid-scan Fourier transform infrared spectroscopy (RSFTIR) and simultaneous TG-IR technology. The results showed that the apparent activation energies obtained by the Kissinger, Ozawa and Starink methods were 122.9 kJ·mol−1, 123.2 kJ·mol−1 and 123.5 kJ·mol−1, respectively. The thermodynamic parameters of ΔS≠, ΔH≠ and ΔG≠ were −37.5 J·K−1·mol−1, 118.4 kJ·mol−1 and 138.7 kJ·mol−1, respectively. The decomposition reaction process of DABNT starts with the transformation from a primary amine to a secondary amine and then the loss of one nitro-group from the DABNT structure. Gaseous products, such as N2O and H2O, were detected from decomposition in the range of 50-300 °C. Density functional theory (DFT) calculations were further employed to illustrate the decomposition mechanism. The above-mentioned information on the synthesis and thermal behaviour is quite useful for the scale-up and evaluation of the thermal safety of DABNT.
Źródło:
Central European Journal of Energetic Materials; 2017, 14, 2; 281-295
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Dft investigation of a high energy density polynitro compound, 2,2’-Bis(trinitromethyl)-5,5’-azo-1,2,3,4- tetrazole
Autorzy:
Lin, H.
Zhu, S. G.
Chen, P. Y.
Li, K.
Li, H. Z.
Peng, X. H.
Powiązania:
https://bibliotekanauki.pl/articles/358030.pdf
Data publikacji:
2013
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
polynitro
electronic structure
thermodynamic properties
crystal structure
detonation performance
stability
Opis:
A novel polynitro compound, 2,2’-bis(trinitromethyl)-5,5’-azo- 1,2,3,4-tetrazole, was designed and investigated at the DFT-B3LYP/6-31G(d) level. Its properties, such as electronic structure, IR spectrum, heat of formation, thermodynamic properties and crystal structure, were predicted. This compound is most likely to crystallize in the P21 space group, and the corresponding cell parameters are Z = 2, a = 5.46 Å, b = 9.72 Å, c = 14.05 Å, α = 90°, β = 90°, γ = 90°. In addition, the detonation velocity and pressure were also estimated by using the empirical Kamlet-Jacobs equations, and were predicted to be 8.28 km/s and 31.61 GPa respectively. The oxygen balance of this compound is +13.79%, which indicates that it could serve as an oxidizer. Bond dissociation energy calculations show that the C(13)-N(21)O2 and C(14)-N(30)O2 bonds are the locations of thermal decomposition and that this compounds meets the thermal stability requirements as an exploitable explosive. Keywords: polynitro, electronic structure, thermodynamic properties, crystal structure, detonation performance, stability.
Źródło:
Central European Journal of Energetic Materials; 2013, 10, 3; 325-338
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Influence of Polytetrafluorethylene on the Mechanical and Safety Properties of a Composite Modified Double Base Propellant
Autorzy:
Sun, S.
Zhang, T.
Zhao, B.
Zhang, G.
Li, X.
Luo, Y.
Powiązania:
https://bibliotekanauki.pl/articles/358296.pdf
Data publikacji:
2018
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
PTFE fibres
CMDB propellant
mechanical properties
mechanical sensitivity
combustion
Opis:
A novel Composite Modified Double Base (CMDB) propellant, formed by mechanically mixing aluminium/polytetrafluorethylene (Al/PTFE) powders, was prepared through a rolling process. A variety of tests, such as tensile properties, particle size analysis etc., were carried out to study the influence of PTFE on the CMDB propellant properties. The PTFE deformed from particles to fibres under a uniform shear force, forming a fibre network which greatly improved the propellant’s mechanical properties. Compared to that of the CMDB propellant without PTFE, the elongation of the propellant containing 6% PTFE was increased by 26 times, and moreover, the impact strength was enhanced by 326% at −40 °C. Significantly, the propellant friction and impact sensitivities were reduced by 75.8% and 35.6%, respectively. In addition, the presence of PTFE in the propellant resulted in fluorination of the Al. The gaseous combustion product AlF3 reduced the propellant combustion agglomeration. Consequently, PTFE significantly promoted the propellant’s mechanical performance, decreased the shock (friction, impact) sensitivity and reduced combustion agglomeration.
Źródło:
Central European Journal of Energetic Materials; 2018, 15, 3; 468-484
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Microstructural Evolution in HMX Based Plastic-bonded Explosive During Heating and Cooling Process: an in situ Small-angle Scattering Study
Autorzy:
Yan, G.
Tian, Q.
Liu, J.
Fan, Z.
Sun, G.
Zhang, C.
Wang, Y.
Chen, B.
Gong, J.
Zhou, X.
Yang, Z.
Nie, F.
Li, J.
Li, X.
Powiązania:
https://bibliotekanauki.pl/articles/358618.pdf
Data publikacji:
2016
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
SANS
SAXS
HMX-PBX
thermal damages
phase transition
Opis:
The thermal damage in octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) based plastic-bonded explosive (PBX) was investigated using in situ small-angle neutron and X-ray scattering techniques. The microstructural evolution was quantitatively characterized by the model fitting parameters of total interfacial surface area (Sv) and void volume distribution. The Sv of HMX-PBX decreased markedly above 100 °C, indicating the movement of binder into the voids. After subsequent cooling to room temperature, the scattering intensity increased significantly with increasing storage time, and a new population of voids with average diameter of 20 nm was observed, accompanied by the gradual phase transition of HMX from δ- to β-phase. The experimental results implied that serious damage within the HMX-PBX was developed during storage after heating.
Źródło:
Central European Journal of Energetic Materials; 2016, 13, 4; 916-926
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-6 z 6

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies