Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "investment strategy" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Machine Learning Methods in Algorithmic Trading Strategy Optimization – Design and Time Efficiency
Autorzy:
Ryś, Przemysław
Ślepaczuk, Robert
Powiązania:
https://bibliotekanauki.pl/articles/1356900.pdf
Data publikacji:
2019-08-09
Wydawca:
Uniwersytet Warszawski. Wydział Nauk Ekonomicznych
Tematy:
Algorithmic trading
investment strategy
machine learning
optimization
differential evolutionary method
cross-validation
overfitting
Opis:
The main aim of this paper was to formulate and analyse the machine learning methods, fitted to the strategy parameters optimization specificity. The most important problems are the sensitivity of a strategy performance to little parameter changes and numerous local extrema distributed over the solution space in an irregular way. The methods were designed for the purpose of significant shortening of the computation time, without a substantial loss of strategy quality. The efficiency of methods was compared for three different pairs of assets in case of moving averages crossover system. The problem was presented for three sets of two assets’ portfolios. In the first case, a strategy was trading on the SPX and DAX index futures; in the second, on the AAPL and MSFT stocks; and finally, in the third case, on the HGF and CBF commodities futures. The methods operated on the in-sample data, containing 16 years of daily prices between 1998 and 2013 and was validated on the out-of-sample period between 2014 and 2017. The major hypothesis verified in this paper is that machine learning methods select strategies with evaluation criterion near the highest one, but in significantly lower execution time than the brute force method (Exhaustive Search).
Źródło:
Central European Economic Journal; 2018, 5, 52; 206 - 229
2543-6821
Pojawia się w:
Central European Economic Journal
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Robustness of Support Vector Machines in Algorithmic Trading on Cryptocurrency Market
Autorzy:
Ślepaczuk, Robert
Zenkova, Maryna
Powiązania:
https://bibliotekanauki.pl/articles/1356913.pdf
Data publikacji:
2019-08-07
Wydawca:
Uniwersytet Warszawski. Wydział Nauk Ekonomicznych
Tematy:
Machine learning
support vector machines
investment algorithm
algorithmic trading
strategy
optimization
cross-validation
overfitting
cryptocurrency market
technical analysis
meta parameters
Opis:
This study investigates the profitability of an algorithmic trading strategy based on training SVM model to identify cryptocurrencies with high or low predicted returns. A tail set is defined to be a group of coins whose volatility-adjusted returns are in the highest or the lowest quintile. Each cryptocurrency is represented by a set of six technical features. SVM is trained on historical tail sets and tested on the current data. The classifier is chosen to be a nonlinear support vector machine. The portfolio is formed by ranking coins using the SVM output. The highest ranked coins are used for long positions to be included in the portfolio for one reallocation period. The following metrics were used to estimate the portfolio profitability: %ARC (the annualized rate of change), %ASD (the annualized standard deviation of daily returns), MDD (the maximum drawdown coefficient), IR1, IR2 (the information ratio coefficients). The performance of the SVM portfolio is compared to the performance of the four benchmark strategies based on the values of the information ratio coefficient IR1, which quantifies the risk-weighted gain. The question of how sensitive the portfolio performance is to the parameters set in the SVM model is also addressed in this study.
Źródło:
Central European Economic Journal; 2018, 5, 52; 186 - 205
2543-6821
Pojawia się w:
Central European Economic Journal
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies