Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "modal logic" wg kryterium: Temat


Tytuł:
A Note on the Intuitionistic Logic of False Belief
Autorzy:
Witczak, Tomasz
Powiązania:
https://bibliotekanauki.pl/articles/2142756.pdf
Data publikacji:
2021-09-01
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
Intuitionistic modal logic
non-normal modal logic
neighborhood semantics
Opis:
In this paper we analyse logic of false belief in the intuitionistic setting. This logic, studied in its classical version by Steinsvold, Fan, Gilbert and Venturi, describes the following situation: a formula $\varphi$ is not satisfied in a given world, but we still believe in it (or we think that it should be accepted). Another interpretations are also possible: e.g. that we do not accept $\varphi$ but it is imposed on us by a kind of council or advisory board. From the mathematical point of view, the idea is expressed by an adequate form of modal operator $\mathsf{W}$ which is interpreted in relational frames with neighborhoods. We discuss monotonicity of forcing, soundness, completeness and several other issues. Finally, we mention the fact that it is possible to investigate intuitionistic logics of unknown truths.
Źródło:
Bulletin of the Section of Logic; 2022, 51, 1; 57-71
0138-0680
2449-836X
Pojawia się w:
Bulletin of the Section of Logic
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
From Intuitionism to Brouwers Modal Logic
Autorzy:
Kostrzycka, Zofia
Powiązania:
https://bibliotekanauki.pl/articles/1023286.pdf
Data publikacji:
2020-12-30
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
intuitionistic logic
Kripke frames
Brouwer's modal logic
Opis:
We try to translate the intuitionistic propositional logic INT into Brouwer's modal logic KTB. Our translation is motivated by intuitions behind Brouwer's axiom p →☐◊p The main idea is to interpret intuitionistic implication as modal strict implication, whereas variables and other positive sentences remain as they are. The proposed translation preserves fragments of the Rieger-Nishimura lattice which is the Lindenbaum algebra of monadic formulas in INT. Unfortunately, INT is not embedded by this mapping into KTB.
Źródło:
Bulletin of the Section of Logic; 2020, 49, 4; 343-358
0138-0680
2449-836X
Pojawia się w:
Bulletin of the Section of Logic
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Neighbourhood Semantics for Graded Modal Logic
Autorzy:
Chen, Jinsheng
van Ditmarsch, Hans
Greco, Giuseppe
Tzimoulis, Apostolos
Powiązania:
https://bibliotekanauki.pl/articles/2033856.pdf
Data publikacji:
2021-07-14
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
Graded modal logic
neighbourhood frames
bisimulation
Opis:
We introduce a class of neighbourhood frames for graded modal logic embedding Kripke frames into neighbourhood frames. This class of neighbourhood frames is shown to be first-order definable but not modally definable. We also obtain a new definition of graded bisimulation with respect to Kripke frames by modifying the definition of monotonic bisimulation.
Źródło:
Bulletin of the Section of Logic; 2021, 50, 3; 373-395
0138-0680
2449-836X
Pojawia się w:
Bulletin of the Section of Logic
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A Sound Interpretation of Leśniewskis Epsilon in Modal Logic KTB
Autorzy:
Inoue, Takao
Powiązania:
https://bibliotekanauki.pl/articles/2033852.pdf
Data publikacji:
2021-11-09
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
Le´sniewski’s ontology
propositional ontology
translation
interpretation
modal logic
KTB
soundness
Grzegorczyk’s modal logic
Opis:
In this paper, we shall show that the following translation \(I^M\) from the propositional fragment \(\bf L_1\) of Leśniewski's ontology to modal logic \(\bf KTB\) is sound: for any formula \(\phi\) and \(\psi\) of \(\bf L_1\), it is defined as (M1) \(I^M(\phi \vee \psi) = I^M(\phi) \vee I^M(\psi)\), (M2) \(I^M(\neg \phi) = \neg I^M(\phi)\), (M3) \(I^M(\epsilon ab) = \Diamond p_a \supset p_a . \wedge . \Box p_a \supset \Box p_b .\wedge . \Diamond p_b \supset p_a\), where \(p_a\) and \(p_b\) are propositional variables corresponding to the name variables \(a\) and \(b\), respectively. In the last, we shall give some comments including some open problems and my conjectures.
Źródło:
Bulletin of the Section of Logic; 2021, 50, 4; 455-463
0138-0680
2449-836X
Pojawia się w:
Bulletin of the Section of Logic
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On Paracomplete Versions of Jaśkowskis Discussive Logic
Autorzy:
Mruczek-Nasieniewska, Krystyna
Petrukhin, Yaroslav
Shangin, Vasily
Powiązania:
https://bibliotekanauki.pl/articles/43183714.pdf
Data publikacji:
2024
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
discussive logic
discursive logic
modal logic
paracomplete logic
paraconsistent logic
Opis:
Jaśkowski's discussive (discursive) logic \( \mathbf{D_2} \) is historically one of the first paraconsistent logics, i.e., logics which 'tolerate' contradictions. Following Jaśkowski's idea to define his discussive logic by means of the modal logic \( \mathbf{ S5 } \) via special translation functions between discussive and modal languages, and supporting at the same time the tradition of paracomplete logics being the counterpart of paraconsistent ones, we present a paracomplete discussive logic \( \mathbf{ D_2^p } \).
Źródło:
Bulletin of the Section of Logic; 2024, 53, 1; 29-61
0138-0680
2449-836X
Pojawia się w:
Bulletin of the Section of Logic
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A New Arithmetically Incomplete First-Order Extension of Gl All Theorems of Which Have Cut Free Proofs
Autorzy:
Tourlakis, George
Powiązania:
https://bibliotekanauki.pl/articles/749974.pdf
Data publikacji:
2016
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
Modal logic
GL
first-order logic
proof theory
cut elimination
reflection property
disjunction property
quantified modal logic
QGL
arithmetical completeness
Opis:
Reference [12] introduced a novel formula to formula translation tool (“formula-tors”) that enables syntactic metatheoretical investigations of first-order modallogics, bypassing a need to convert them first into Gentzen style logics in order torely on cut elimination and the subformula property. In fact, the formulator tool,as was already demonstrated in loc. cit., is applicable even to the metatheoreticalstudy of logics such as QGL, where cut elimination is (provably, [2]) unavailable. This paper applies the formulator approach to show the independence of the axiom schema ☐A → ☐∀ A of the logics M3and ML3 of [17, 18, 11, 13]. This leads to the conclusion that the two logics obtained by removing this axiom are incomplete, both with respect to their natural Kripke structures and to arithmetical interpretations.  In particular, the so modified ML3 is, similarly to QGL, an arithmetically incomplete first-order extension of GL, but, unlike QGL, all its theorems have cut free proofs. We also establish here, via formulators, a stronger version of the disjunction property for GL and QGL without going through Gentzen versions of these logics (compare with the more complexproofs in [2,8]).
Źródło:
Bulletin of the Section of Logic; 2016, 45, 1
0138-0680
2449-836X
Pojawia się w:
Bulletin of the Section of Logic
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Linear Abelian Modal Logic
Autorzy:
Mohammadi, Hamzeh
Powiązania:
https://bibliotekanauki.pl/articles/43184005.pdf
Data publikacji:
2024
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
many-valued logic
modal logic
abelian logic
hypersequent calculus
cut-elimination
Opis:
A many-valued modal logic, called linear abelian modal logic \(\rm {\mathbf{LK(A)}}\) is introduced as an extension of the abelian modal logic \(\rm \mathbf{K(A)}\). Abelian modal logic \(\rm \mathbf{K(A)}\) is the minimal modal extension of the logic of lattice-ordered abelian groups. The logic \(\rm \mathbf{LK(A)}\) is axiomatized by extending \(\rm \mathbf{K(A)}\) with the modal axiom schemas \(\Box(\varphi\vee\psi)\rightarrow(\Box\varphi\vee\Box\psi)\) and \((\Box\varphi\wedge\Box\psi)\rightarrow\Box(\varphi\wedge\psi)\). Completeness theorem with respect to algebraic semantics and a hypersequent calculus admitting cut-elimination are established. Finally, the correspondence between hypersequent calculi and axiomatization is investigated.
Źródło:
Bulletin of the Section of Logic; 2024, 53, 1; 1-28
0138-0680
2449-836X
Pojawia się w:
Bulletin of the Section of Logic
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
New Modification of the Subformula Property for a Modal Logic
Autorzy:
Takano, Mitio
Powiązania:
https://bibliotekanauki.pl/articles/1023185.pdf
Data publikacji:
2020-11-04
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
subformula property
modal logic
sequent calculus
scope of □
Opis:
A modified subformula property for the modal logic KD with the additionalaxiom □ ◊(A ∨ B) ⊃ □ ◊ A ∨ □ ◊B is shown. A new modification of the notion of subformula is proposed for this purpose. This modification forms a natural extension of our former one on which modified subformula property for the modal logics K5, K5D and S4.2 has been shown ([2] and [4]). The finite model property as well as decidability for the logic follows from this.
Źródło:
Bulletin of the Section of Logic; 2020, 49, 3; 255-268
0138-0680
2449-836X
Pojawia się w:
Bulletin of the Section of Logic
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A Modified Subformula Property for the Modal Logic S4.2
Autorzy:
Takano, Mitio
Powiązania:
https://bibliotekanauki.pl/articles/749870.pdf
Data publikacji:
2019
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
modal logic S4.2
sequent calculus
subformula property
Opis:
The modal logic S4.2 is S4 with the additional axiom ◊□A ⊃ □◊A. In this article, the sequent calculus GS4.2 for this logic is presented, and by imposing an appropriate restriction on the application of the cut-rule, it is shown that, every GS4.2-provable sequent S has a GS4.2-proof such that every formula occurring in it is either a subformula of some formula in S, or the formula □¬□B or ¬□B, where □B occurs in the scope of some occurrence of □ in some formula of S. These are just the K5-subformulas of some formula in S which were introduced by us to show the modied subformula property for the modal logics K5 and K5D (Bull Sect Logic 30(2): 115–122, 2001). Some corollaries including the interpolation property for S4.2 follow from this. By slightly modifying the proof, the finite model property also follows.
Źródło:
Bulletin of the Section of Logic; 2019, 48, 1
0138-0680
2449-836X
Pojawia się w:
Bulletin of the Section of Logic
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Simple Decision Procedure for S5 in Standard Cut-Free Sequent Calculus
Autorzy:
Indrzejczak, Andrzej
Powiązania:
https://bibliotekanauki.pl/articles/749928.pdf
Data publikacji:
2016
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
Modal logic S5
decidability
normal forms
sequent calculus
Opis:
In the paper a decision procedure for S5 is presented which uses a cut-free sequent calculus with additional rules allowing a reduction to normal modal forms. It utilizes the fact that in S5 every formula is equivalent to some 1-degree formula, i.e. a modally-flat formula with modal functors having only boolean formulas in its scope. In contrast to many sequent calculi (SC) for S5 the presented system does not introduce any extra devices. Thus it is a standard version of SC but with some additional simple rewrite rules. The procedure combines the proces of saturation of sequents with reduction of their elements to some normal modal form.
Źródło:
Bulletin of the Section of Logic; 2016, 45, 2
0138-0680
2449-836X
Pojawia się w:
Bulletin of the Section of Logic
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Semantical Proof of Subformula Property for the Modal Logics K4.3, KD4.3, and S4.3
Autorzy:
Yazaki, Daishi
Powiązania:
https://bibliotekanauki.pl/articles/750044.pdf
Data publikacji:
2019
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
modal logic
analytic cut
subformula property
finite model property
Opis:
The main purpose of this paper is to give alternative proofs of syntactical and semantical properties, i.e. the subformula property and the nite model property, of the sequent calculi for the modal logics K4.3, KD4.3, and S4.3. The application of the inference rules is said to be acceptable, if all the formulas in the upper sequents are subformula of the formulas in lower sequent. For some modal logics, Takano analyzed the relationships between the acceptable inference rules and semantical properties by constructing models. By using these relationships, he showed Kripke completeness and subformula property. However, his method is difficult to apply to inference rules for the sequent calculi for K4.3, KD4.3, and S4.3. Lookinglosely at Takano's proof, we nd that his method can be modied to construct nite models based on the sequent calculus for K4.3, if the calculus has (cut) and all the applications of the inference rules are acceptable. Similarly, we can apply our results to the calculi for KD4.3 and S4.3. This leads not only to Kripke completeness and subformula property, but also to finite model property of these logics simultaneously.
Źródło:
Bulletin of the Section of Logic; 2019, 48, 4
0138-0680
2449-836X
Pojawia się w:
Bulletin of the Section of Logic
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An Arithmetically Complete Predicate Modal Logic
Autorzy:
Hao, Yunge
Tourlakis, George
Powiązania:
https://bibliotekanauki.pl/articles/2033850.pdf
Data publikacji:
2021-08-23
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
Predicate modal logic
arithmetic completeness
logic GL
Solovay's theorem
equational proofs
Opis:
This paper investigates a first-order extension of GL called \(\textup{ML}^3\). We outline briefly the history that led to \(\textup{ML}^3\), its key properties and some of its toolbox: the \emph{conservation theorem}, its cut-free Gentzenisation, the ``formulators'' tool. Its semantic completeness (with respect to finite reverse well-founded Kripke models) is fully stated in the current paper and the proof is retold here. Applying the Solovay technique to those models the present paper establishes its main result, namely, that \(\textup{ML}^3\) is arithmetically complete. As expanded below, \(\textup{ML}^3\) is a first-order modal logic that along with its built-in ability to simulate general classical first-order provability―"\(\Box\)" simulating the the informal classical "\(\vdash\)"―is also arithmetically complete in the Solovay sense.
Źródło:
Bulletin of the Section of Logic; 2021, 50, 4; 513-541
0138-0680
2449-836X
Pojawia się w:
Bulletin of the Section of Logic
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Cut Elimination for Extended Sequent Calculi
Autorzy:
Martini, Simone
Masini, Andrea
Zorzi, Margherita
Powiązania:
https://bibliotekanauki.pl/articles/43182562.pdf
Data publikacji:
2023
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
proof theory
sequent calculus
cut elimination
modal logic
2-sequents
Opis:
We present a syntactical cut-elimination proof for an extended sequent calculus covering the classical modal logics in the \(\mathsf{K}\), \(\mathsf{D}\), \(\mathsf{T}\), \(\mathsf{K4}\), \(\mathsf{D4}\) and \(\mathsf{S4}\) spectrum. We design the systems uniformly since they all share the same set of rules. Different logics are obtained by “tuning” a single parameter, namely a constraint on the applicability of the cut rule and on the (left and right, respectively) rules for \(\Box\) and \(\Diamond\). Starting points for this research are 2-sequents and indexed-based calculi (sequents and tableaux). By extending and modifying existing proposals, we show how to achieve a syntactical proof of the cut-elimination theorem that is as close as possible to the one for first-order classical logic. In doing this, we implicitly show how small is the proof-theoretical distance between classical logic and the systems under consideration.
Źródło:
Bulletin of the Section of Logic; 2023, 52, 4; 459-495
0138-0680
2449-836X
Pojawia się w:
Bulletin of the Section of Logic
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Computer-supported Analysis of Positive Properties, Ultrafilters and Modal Collapse in Variants of Gödels Ontological Argument
Autorzy:
Benzmüller, Christoph
Fuenmayor, David
Powiązania:
https://bibliotekanauki.pl/articles/750054.pdf
Data publikacji:
2020
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
computational metaphysics
ontological argument
higher-order modal logic
higher-order logic
automated reasoning
modal ultrafilters
Opis:
Three variants of Kurt Gödel's ontological argument, proposed by Dana Scott, C. Anthony Anderson and Melvin Fitting, are encoded and rigorously assessed on the computer. In contrast to Scott's version of Gödel's argument the two variants contributed by Anderson and Fitting avoid modal collapse. Although they appear quite different on a cursory reading they are in fact closely related. This has been revealed in the computer-supported formal analysis presented in this article. Key to our formal analysis is the utilization of suitably adapted notions of (modal) ultrafilters, and a careful distinction between extensions and intensions of positive properties.
Źródło:
Bulletin of the Section of Logic; 2020, 49, 2
0138-0680
2449-836X
Pojawia się w:
Bulletin of the Section of Logic
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A Short and Readable Proof of Cut Elimination for Two First-Order Modal Logics
Autorzy:
Gao, Feng
Tourlakis, George
Powiązania:
https://bibliotekanauki.pl/articles/749884.pdf
Data publikacji:
2015
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
Modal logic
GL
QGL
first-order logic
proof theory
cut elimination
cut admissibility
provability logic
Opis:
A well established technique toward developing the proof theory of a Hilbert-style modal logic is to introduce a Gentzen-style equivalent (a Gentzenisation), then develop the proof theory of the latter, and finally transfer the metatheoretical results to the original logic (e.g., [1, 6, 8, 18, 10, 12]). In the first-order modal case, on one hand we know that the Gentzenisation of the straightforward first-order extension of GL, the logic QGL, admits no cut elimination (if the rule is included as primitive; or, if not included, then the rule is not admissible [1]). On the other hand the (cut-free) Gentzenisations of the first-order modal logics M3 and ML3 of [10, 12] do have cut as an admissible rule. The syntactic cut admissibility proof given in [18] for the Gentzenisation of the propositional provability logic GL is extremely complex, and it was the basis of the proofs of cut admissibility of the Gentzenisations of M3 and ML3, where the presence of quantifiers and quantifier rules added to the complexity and length of the proof. A recent proof of cut admissibility in a cut-free Gentzenisation of GL is given in [5] and is quite short and easy to read. We adapt it here to revisit the proofs for the cases of M3 and ML3, resulting to similarly short and easy to read proofs, only slightly complicated by the presence of quantification and its relevant rules.
Źródło:
Bulletin of the Section of Logic; 2015, 44, 3-4
0138-0680
2449-836X
Pojawia się w:
Bulletin of the Section of Logic
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies