Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "search algorithm" wg kryterium: Temat


Wyświetlanie 1-5 z 5
Tytuł:
Balancing of a linear elastic rotor-bearing system with arbitrarily distributed unbalance using the Numerical Assembly Technique
Autorzy:
Quinz, Georg
Prem, Marcel S.
Klanner, Michael
Ellermann, Katrin
Powiązania:
https://bibliotekanauki.pl/articles/2086883.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
Numerical Assembly Technique
rotor dynamics
modal balancing
recursive eigenvalue search algorithm
dynamika wirnika
wyważanie modalne
Opis:
In this paper, a new application of the Numerical Assembly Technique is presented for the balancing of linear elastic rotor-bearing systems with a stepped shaft and arbitrarily distributed mass unbalance. The method improves existing balancing techniques by combining the advantages of modal balancing with the fast calculation of an efficient numerical method. The rotating stepped circular shaft is modelled according to the Rayleigh beam theory. The Numerical Assembly Technique is used to calculate the steady-state harmonic response, eigenvalues and the associated mode shapes of the rotor. The displacements of a simulation are compared to measured displacements of the rotor-bearing system to calculate the generalized unbalance for each eigenvalue. The generalized unbalances are modified according to modal theory to calculate orthogonal correction masses. In this manner, a rotor-bearing system is balanced using a single measurement of the displacement at one position on the rotor for every critical speed. Three numerical examples are used to show the accuracy and the balancing success of the proposed method.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 6; e138237, 1--7
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A novel hybrid cuckoo search algorithm for optimization of a line-start PM synchronous motor
Autorzy:
Knypiński, Łukasz
Powiązania:
https://bibliotekanauki.pl/articles/2204509.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
hybrid cuckoo search algorithm
heuristic algorithms
multi-objective optimization
permanent magnet synchronous motor
PMSM
algorytm kukułki hybrydowy
algorytm Cuckoo
algorytm heurystyczny
optymalizacja wielocelowa
silnik synchroniczny z magnesem trwałym
Opis:
The paper presents a novel hybrid cuckoo search (CS) algorithm for the optimization of the line-start permanent magnet synchronous motor (LSPMSM). The hybrid optimization algorithm developed is a merger of the heuristic algorithm with the deterministic Hooke–Jeeves method. The hybrid optimization procedure developed was tested on analytical benchmark functions and the results were compared with the classical cuckoo search algorithm, genetic algorithm, particle swarm algorithm and bat algorithm. The optimization script containing a hybrid algorithm was developed in Delphi Tiburón. The results presented show that the modified method is characterized by better accuracy. The optimization procedure developed is related to a mathematical model of the LSPMSM. The multi-objective compromise function was applied as an optimality criterion. Selected results were presented and discussed.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2023, 71, 1; art. no. e144586
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Lung cancer detection using an integration of fuzzy K-Means clustering and deep learning techniques for CT lung images
Autorzy:
Prasad, J. Maruthi Nagendra
Chakravarty, S.
Krishna, M. Vamsi
Powiązania:
https://bibliotekanauki.pl/articles/2173683.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
fuzzy K-means
artificial neural networks
SVM
support vector machine
crow search optimization algorithm
algorytm rozmytych k-średnich
sztuczne sieci neuronowe
maszyna wektorów wspierających
algorytm optymalizacji wyszukiwania kruków
Opis:
Computer aided detection systems are used for the provision of second opinion during lung cancer diagnosis. For early-stage detection and treatment false positive reduction stage also plays a vital role. The main motive of this research is to propose a method for lung cancer segmentation. In recent years, lung cancer detection and segmentation of tumors is considered one of the most important steps in the surgical planning and medication preparations. It is very difficult for the researchers to detect the tumor area from the CT (computed tomography) images. The proposed system segments lungs and classify the images into normal and abnormal and consists of two phases, The first phase will be made up of various stages like pre-processing, feature extraction, feature selection, classification and finally, segmentation of the tumor. Input CT image is sent through the pre-processing phase where noise removal will be taken care of and then texture features are extracted from the pre-processed image, and in the next stage features will be selected by making use of crow search optimization algorithm, later artificial neural network is used for the classification of the normal lung images from abnormal images. Finally, abnormal images will be processed through the fuzzy K-means algorithm for segmenting the tumors separately. In the second phase, SVM classifier is used for the reduction of false positives. The proposed system delivers accuracy of 96%, 100% specificity and sensitivity of 99% and it reduces false positives. Experimental results shows that the system outperforms many other systems in the literature in terms of sensitivity, specificity, and accuracy. There is a great tradeoff between effectiveness and efficiency and the proposed system also saves computation time. The work shows that the proposed system which is formed by the integration of fuzzy K-means clustering and deep learning technique is simple yet powerful and was effective in reducing false positives and segments tumors and perform classification and delivers better performance when compared to other strategies in the literature, and this system is giving accurate decision when compared to human doctor’s decision.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2022, 70, 3; art. no. e139006
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Research on optimization of unrelated parallel machine scheduling based on IG-TS algorithm
Autorzy:
Chi, Xinfu
Liu, Shijing
Li, Ce
Powiązania:
https://bibliotekanauki.pl/articles/2173693.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
warp knitting machine
parallel machine scheduling
iterative greedy algorithm
tabu search
osnowarka
planowanie maszyn równoległych
algorytm zachłanny iteracyjny
przeszukiwanie tabu
Opis:
This issue is a typical NP-hard problem for an unrelated parallel machine scheduling problem with makespan minimization as the goal and no sequence-related preparation time. Based on the idea of tabu search (TS), this paper improves the iterative greedy algorithm (IG) and proposes an IG-TS algorithm with deconstruction, reconstruction, and neighborhood search operations as the main optimization process. This algorithm has the characteristics of the strong capability of global search and fast speed of convergence. The warp knitting workshop scheduling problem in the textile industry, which has the complex characteristics of a large scale, nonlinearity, uncertainty, and strong coupling, is a typical unrelated parallel machine scheduling problem. The IG-TS algorithm is applied to solve it, and three commonly used scheduling algorithms are set as a comparison, namely the GA-TS algorithm, ABC-TS algorithm, and PSO-TS algorithm. The outcome shows that the scheduling results of the IG-TS algorithm have the shortest manufacturing time and good robustness. In addition, the production comparison between the IG-TS algorithm scheduling scheme and the artificial experience scheduling scheme for the small-scale example problem shows that the IG-TS algorithm scheduling is slightly superior to the artificial experience scheduling in both planning and actual production. Experiments show that the IG-TS algorithm is feasible in warp knitting workshop scheduling problems, effectively realizing the reduction of energy and the increase in efficiency of a digital workshop in the textile industry.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2022, 70, 4; art. no. e141724
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Solving scheduling problems with integrated online sustainability observation using heuristic optimization
Autorzy:
Burduk, Anna
Musiał, Kamil
Balashov, Artem
Batako, Andre
Safonyk, Andrii
Powiązania:
https://bibliotekanauki.pl/articles/2173719.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
production scheduling
sustainable development
genetic algorithm
meta-heuristics
intelligent optimization methods of production systems
tabu search
harmonogramowanie produkcji
zrównoważony rozwój
algorytm genetyczny
przeszukiwanie tabu
metaheurystyki
inteligentne metody optymalizacji systemów produkcyjnych
Opis:
The paper deals with the issue of production scheduling for various types of employees in a large manufacturing company where the decision-making process was based on a human factor and the foreman’s know-how, which was error-prone. Modern production processes are getting more and more complex. A company that wants to be competitive on the market must consider many factors. Relying only on human factors is not efficient at all. The presented work has the objective of developing a new employee scheduling system that might be considered a particular case of the job shop problem from the set of the employee scheduling problems. The Neuro-Tabu Search algorithm and the data gathered by manufacturing sensors and process controls are used to remotely inspect machine condition and sustainability as well as for preventive maintenance. They were used to build production schedules. The construction of the Neuro-Tabu Search algorithm combines the Tabu Search algorithm, one of the most effective methods of constructing heuristic algorithms for scheduling problems, and a self-organizing neural network that further improves the prohibition mechanism of the Tabu Search algorithm. Additionally, in the paper, sustainability with the use of Industry 4.0 is considered. That would make it possible to minimize the costs of employees’ work and the cost of the overall production process. Solving the optimization problem offered by Neuro-Tabu Search algorithm and real-time data shows a new way of production management.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2022, 70, 6; art. no. e143830
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies