Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "linear optimization" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Artificial bee colony based state feedback position controller for PMSM servo-drive – the efficiency analysis
Autorzy:
Tarczewski, T.
Niewiara, L. J.
Grzesiak, L. M.
Powiązania:
https://bibliotekanauki.pl/articles/200239.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
tuning
PMSM servo-drive
artificial bee colony algorithm
linear-quadratic optimization problem
pole placement
Opis:
This paper presents a state feedback controller (SFC) for position control of PMSM servo-drive. Firstly, a short review of the commonly used swarm-based optimization algorithms for tuning of SFC is presented. Then designing process of current control loop as well as of SFC with feedforward path is depicted. Next, coefficients of controller are tuned by using an artificial bee colony (ABC) optimization algorithm. Three of the most commonly applied tuning methods (i.e. linear-quadratic optimization, pole placement technique and direct selection of coefficients) are used and investigated in terms of positioning performance, disturbance compensation and robustness against plant parameter changes. Simulation analysis is supported by experimental tests conducted on laboratory stand with modern PMSM servo-drive.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2020, 68, 5; 997-1007
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Generalized ordered linear regression with regularization
Autorzy:
Łęski, J.
Henzel, N.
Powiązania:
https://bibliotekanauki.pl/articles/201591.pdf
Data publikacji:
2012
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
linear regression
IRLS
OWA
conjugate gradient optimization
robust methods
Opis:
Linear regression analysis has become a fundamental tool in experimental sciences. We propose a new method for parameter estimation in linear models. The 'Generalized Ordered Linear Regression with Regularization' (GOLRR) uses various loss functions (including the o-insensitive ones), ordered weighted averaging of the residuals, and regularization. The algorithm consists in solving a sequence of weighted quadratic minimization problems where the weights used for the next iteration depend not only on the values but also on the order of the model residuals obtained for the current iteration. Such regression problem may be transformed into the iterative reweighted least squares scenario. The conjugate gradient algorithm is used to minimize the proposed criterion function. Finally, numerical examples are given to demonstrate the validity of the method proposed.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2012, 60, 3; 481-489
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies