Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "algorytm pszczół" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
A comparison of nature inspired algorithms for the quadratic assignment problem
Autorzy:
Chmiel, W.
Kadłuczka, P.
Kwiecień, J.
Filipowicz, B.
Powiązania:
https://bibliotekanauki.pl/articles/202135.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
permutation problem
quadratic assignment problem
ant algorithm
bees algorithm
problem permutacji
problem przydziału kwadratowego
algorytm Ant Colony
algorytm pszczół
Opis:
This paper presents an application of the ant algorithm and bees algorithm in optimization of QAP problem as an example of NP-hard optimization problem. The experiments with two types of algorithms: the bees algorithm and the ant algorithm were performed for the test instances of the quadratic assignment problem from QAPLIB, designed by Burkard, Karisch and Rendl. On the basis of the experiments results, an influence of particular elements of algorithms, including neighbourhood size and neighbourhood search method, will be determined.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2017, 65, 4; 513-522
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Nonlinear PID controller parameter optimization using modified hybrid artificial bee colony algorithm for continuous stirred tank reactor
Autorzy:
Pugazhenthi, Nedumal
Selvaperumal, S.
Vijayakumar, K.
Powiązania:
https://bibliotekanauki.pl/articles/2128163.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
artificial bee colony
stirred tank reactor
genetic algorithm
nonlinear PID
controller performance measures
sztuczna kolonia pszczół
reaktor zbiornikowy z mieszadłem
algorytm genetyczny
PID nieliniowy
miernik wydajności kontrolera
Opis:
The artificial bee colony (ABC) algorithm is well known and widely used optimization method based on swarm intelligence, and it is inspired by the behavior of honeybees searching for a high amount of nectar from the flower. However, this algorithm has not been exploited sufficiently. This research paper proposes a novel method to analyze the exploration and exploitation of ABC. In ABC, the scout bee searches for a source of random food for exploitation. Along with random search, the scout bee is guided by a modified genetic algorithm approach to locate a food source with a high nectar value. The proposed algorithm is applied for the design of a nonlinear controller for a continuously stirred tank reactor (CSTR). The statistical analysis of the results confirms that the proposed modified hybrid artificial bee colony (HMABC) achieves consistently better performance than the traditional ABC algorithm. The results are compared with conventional ABC and nonlinear PID (NLPID) to show the superiority of the proposed algorithm. The performance of the HMABC algorithm-based controller is competitive with other state-of-the-art meta-heuristic algorithm-based controllers in the literature.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 3; e137348, 1--10
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Nonlinear PID controller parameter optimization using modified hybrid artificial bee colony algorithm for continuous stirred tank reactor
Autorzy:
Pugazhenthi, Nedumal
Selvaperumal, S.
Vijayakumar, K.
Powiązania:
https://bibliotekanauki.pl/articles/2173628.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
artificial bee colony
stirred tank reactor
genetic algorithm
nonlinear PID
controller performance measures
sztuczna kolonia pszczół
reaktor zbiornikowy z mieszadłem
algorytm genetyczny
PID nieliniowy
miernik wydajności kontrolera
Opis:
The artificial bee colony (ABC) algorithm is well known and widely used optimization method based on swarm intelligence, and it is inspired by the behavior of honeybees searching for a high amount of nectar from the flower. However, this algorithm has not been exploited sufficiently. This research paper proposes a novel method to analyze the exploration and exploitation of ABC. In ABC, the scout bee searches for a source of random food for exploitation. Along with random search, the scout bee is guided by a modified genetic algorithm approach to locate a food source with a high nectar value. The proposed algorithm is applied for the design of a nonlinear controller for a continuously stirred tank reactor (CSTR). The statistical analysis of the results confirms that the proposed modified hybrid artificial bee colony (HMABC) achieves consistently better performance than the traditional ABC algorithm. The results are compared with conventional ABC and nonlinear PID (NLPID) to show the superiority of the proposed algorithm. The performance of the HMABC algorithm-based controller is competitive with other state-of-the-art meta-heuristic algorithm-based controllers in the literature.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 3; art. no. e137348
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies