Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Features" wg kryterium: Temat


Wyświetlanie 1-7 z 7
Tytuł:
Exploring the use of syntactic dependency features for document-level sentiment classification
Autorzy:
Kalaivani, K. S.
Kuppuswami, S.
Powiązania:
https://bibliotekanauki.pl/articles/201609.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
document-level sentiment classification
syntactic dependency features
generalized dependency features
information gain
weighted frequency
weighted odds
zdobywanie informacji
częstotliwość
szanse
Opis:
An automatic analysis of product reviews requires deep understanding of the natural language text by machine. The limitation of bag-of-words (BoW) model is that a large amount of word relation information from the original sentence is lost and the word order is ignored. Higher-order-N-grams also fail to capture the long-range dependency relations and word order information. To address these issues, syntactic features extracted from the dependency relations can be used for machine learning based document-level sentiment classification. Generalization of syntactic dependency features and negation handling is used to achieve more accurate classification. Further to reduce the huge dimensionality of the feature space, feature selection methods based on information gain (IG) and weighted frequency and odds (WFO) are used. A supervised feature weighting scheme called delta term frequency-inverse document frequency (TF-IDF) is also employed to boost the importance of discriminative features using the observed uneven distribution of features between the two classes. Experimental results show the effectiveness of generalized syntactic dependency features over standard features for sentiment classification using Boolean multinomial naive Bayes (BMNB) classifier.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2019, 67, 2; 339-347
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Fusion of feature selection methods in gene recognition
Autorzy:
Gil, Fabian
Osowski, Stanislaw
Powiązania:
https://bibliotekanauki.pl/articles/2173571.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
diagnostic features
selection methods
genes
recognition
biomarkers
funkcja diagnostyczna
metody selekcji
geny
rozpoznanie
biomarkery
Opis:
The paper presents the fusion approach of different feature selection methods in pattern recognition problems. The following methods are examined: nearest component analysis, Fisher discriminant criterion, refiefF method, stepwise fit, Kolmogorov-Smirnov criteria, T2-test, Kruskall-Wallis test, feature correlation with class, and SVM recursive feature elimination. The sensitivity to the noisy data as well as the repeatability of the most important features are studied. Based on this study, the best selection methods are chosen and applied in the process of selection of the most important genes and gene sequences in a dataset of gene expression microarray in prostate and ovarian cancers. The results of their fusion are presented and discussed. The small selected set of such genes can be treated as biomarkers of cancer.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 3; art. no. e136748
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Fusion of feature selection methods in gene recognition
Autorzy:
Gil, Fabian
Osowski, Stanislaw
Powiązania:
https://bibliotekanauki.pl/articles/2128155.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
diagnostic features
selection methods
genes
recognition
biomarkers
funkcja diagnostyczna
metody selekcji
geny
rozpoznanie
biomarkery
Opis:
The paper presents the fusion approach of different feature selection methods in pattern recognition problems. The following methods are examined: nearest component analysis, Fisher discriminant criterion, refiefF method, stepwise fit, Kolmogorov-Smirnov criteria, T2-test, Kruskall-Wallis test, feature correlation with class, and SVM recursive feature elimination. The sensitivity to the noisy data as well as the repeatability of the most important features are studied. Based on this study, the best selection methods are chosen and applied in the process of selection of the most important genes and gene sequences in a dataset of gene expression microarray in prostate and ovarian cancers. The results of their fusion are presented and discussed. The small selected set of such genes can be treated as biomarkers of cancer.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 3; e136748, 1--8
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Specific emitter identification using geometric features of frequency drift curve
Autorzy:
Zhao, Y.
Wui, L.
Zhang, J.
Li, Y.
Powiązania:
https://bibliotekanauki.pl/articles/200575.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
specific emitter identification
geometric features
frequency drift
adaptive fractional spectrogram
support vector machine
emiter
cechy geometryczne
dryf częstotliwości
spektrogram
Opis:
Specific emitter identification (SEI) is a technique for recognizing different emitters of the same type which have the same modulation parameters. Using only the classic modulation parameters for recognition, one cannot distinguish different emitters of a same type. To solve the problem, new features urgently need to be developed for recognition. This paper focuses on the common phenomenon of frequency drift, defines geometric features of frequency drift curve and, finally, proposes a practical algorithm of specific emitter identification using the geometric features. The proposed algorithm consists of three processes: instantaneous frequency estimation based on the adaptive fractional spectrogram, feature extraction of frequency drift curve based on geometric methods for describing a curve and recognition process based on support vector machine. Simulation results show that the identification rate is generally more than 98% above –5 dB of signal to noise ratio (SNR), and real data experiment verifies the practical performance of the proposed algorithm.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2018, 66, 1; 99-108
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Deep learning versus classical neural approach to mammogram recognition
Autorzy:
Kurek, J.
Świderski, B.
Osowski, S.
Kruk, M.
Barhoumi, W.
Powiązania:
https://bibliotekanauki.pl/articles/200919.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
convolutional neural networks
breast cancer diagnosis
mammogram recognition
diagnostic features
splotowe sieci neuronowe
diagnostyka raka piersi
rozpoznawanie
mammografia
cechy diagnostyczne
Opis:
Automatic recognition of mammographic images in breast cancer is a complex issue due to the confusing appearance of some perfectly normal tissues which look like masses. The existing computer-aided systems suffer from non-satisfactory accuracy of cancer detection. This paper addresses this problem and proposes two alternative techniques of mammogram recognition: the application of a variety of methods for definition of numerical image descriptors in combination with an efficient SVM classifier (so-called classical approach) and application of deep learning in the form of convolutional neural networks, enhanced with additional transformations of input mammographic images. The key point of the first approach is defining the proper numerical image descriptors and selecting the set which is the most class discriminative. To achieve better performance of the classifier, many image descriptors were defined by means of applying different characterization of the images: Hilbert curve representation, Kolmogorov-Smirnov statistics, the maximum subregion principle, percolation theory, fractal texture descriptors as well as application of wavelet and wavelet packets. Thanks to them, better description of the basic image properties has been obtained. In the case of deep learning, the features are automatically extracted as part of convolutional neural network learning. To get better quality of results, additional representations of mammograms, in the form of nonnegative matrix factorization and the self-similarity principle, have been proposed. The methods applied were evaluated based on a large database composed of 10,168 regions of interest in mammographic images taken from the DDSM database. Experimental results prove the advantage of deep learning over traditional approach to image recognition. Our best average accuracy in recognizing abnormal cases (malignant plus benign versus healthy) was 85.83%, with sensitivity of 82.82%, specificity of 86.59% and AUC = 0.919. These results are among the best for this massive database.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2018, 66, 6; 831-840
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Multi-feature ensemble system in the renal tumour classification task
Autorzy:
Osowska-Kurczab, Aleksandra Maria
Markiewicz, Tomasz
Dziekiewicz, Miroslaw
Lorent, Malgorzata
Powiązania:
https://bibliotekanauki.pl/articles/2173572.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
medical imaging
renal cell carcinoma
convolutional neural networks
textural features
support vector machine
computer vision
deep learning
technika deep learning
obrazowanie medyczne
rak nerkowokomórkowy
konwolucyjne sieci neuronowe
cechy tekstury
maszyna wektorów nośnych
wizja komputerowa
głęboka nauka
Opis:
Recently, the analysis of medical imaging is gaining substantial research interest, due to advancements in the computer vision field. Automation of medical image analysis can significantly improve the diagnosis process and lead to better prioritization of patients waiting for medical consultation. This research is dedicated to building a multi-feature ensemble model which associates two independent methods of image description: textural features and deep learning. Different algorithms of classification were applied to single-phase computed tomography images containing 8 subtypes of renal neoplastic lesions. The final ensemble includes a textural description combined with a support vector machine and various configurations of Convolutional Neural Networks. Results of experimental tests have proved that such a model can achieve 93.6% of weighted F1-score (tested in 10-fold cross validation mode). Improvement of performance of the best individual predictor totalled 3.5 percentage points.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 3; art. no. e136749
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Multi-feature ensemble system in the renal tumour classification task
Autorzy:
Osowska-Kurczab, Aleksandra Maria
Markiewicz, Tomasz
Dziekiewicz, Miroslaw
Lorent, Malgorzata
Powiązania:
https://bibliotekanauki.pl/articles/2128157.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
medical imaging
renal cell carcinoma
convolutional neural networks
textural features
support vector machine
computer vision
deep learning
technika deep learning
obrazowanie medyczne
rak nerkowokomórkowy
konwolucyjne sieci neuronowe
cechy tekstury
maszyna wektorów nośnych
wizja komputerowa
głęboka nauka
Opis:
Recently, the analysis of medical imaging is gaining substantial research interest, due to advancements in the computer vision field. Automation of medical image analysis can significantly improve the diagnosis process and lead to better prioritization of patients waiting for medical consultation. This research is dedicated to building a multi-feature ensemble model which associates two independent methods of image description: textural features and deep learning. Different algorithms of classification were applied to single-phase computed tomography images containing 8 subtypes of renal neoplastic lesions. The final ensemble includes a textural description combined with a support vector machine and various configurations of Convolutional Neural Networks. Results of experimental tests have proved that such a model can achieve 93.6% of weighted F1-score (tested in 10-fold cross validation mode). Improvement of performance of the best individual predictor totalled 3.5 percentage points.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 3; e136749, 1--8
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-7 z 7

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies