Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Face" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Hand-drawn face sketch recognition using rank-level fusion of image quality assessment metrics
Autorzy:
Mahfoud, Sami
Daamouche, Abdelhamid
Bengherabi, Messaoud
Hadid, Abdenour
Powiązania:
https://bibliotekanauki.pl/articles/2173718.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
face sketch recognition
synthesized face sketch
rank-level fusion
IQA metrics
rozpoznawanie szkiców twarzy
zsyntetyzowany szkic twarzy
fuzja na poziomie rangi
metryka IQA
Opis:
Face Sketch Recognition (FSR) presents a severe challenge to conventional recognition paradigms developed basically to match face photos. This challenge is mainly due to the large texture discrepancy between face sketches, characterized by shape exaggeration, and face photos. In this paper, we propose a training-free synthesized face sketch recognition method based on the rank-level fusion of multiple Image Quality Assessment (IQA) metrics. The advantages of IQA metrics as a recognition engine are combined with the rank-level fusion to boost the final recognition accuracy. By integrating multiple IQA metrics into the face sketch recognition framework, the proposed method simultaneously performs face-sketch matching application and evaluates the performance of face sketch synthesis methods. To test the performance of the recognition framework, five synthesized face sketch methods are used to generate sketches from face photos. We use the Borda count approach to fuse four IQA metrics, namely, structured similarity index metric, feature similarity index metric, visual information fidelity and gradient magnitude similarity deviation at the rank-level. Experimental results and comparison with the state-of-the-art methods illustrate the competitiveness of the proposed synthesized face sketch recognition framework.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2022, 70, 6; art. no. e143554
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Super-resolution reconstruction of face images based on pre-amplification non-negative restricted neighborhood embedding
Autorzy:
Yang, X.
Liu, D.
Zhou, D.
Fei, S.
Powiązania:
https://bibliotekanauki.pl/articles/201163.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
super-resolution
neighborhood embedding
nonnegative restriction
face reconstruction
superrozdzielczość
rozpoznawanie twarzy
rekonstrukcja twarzy
Opis:
The traditional super-resolution (SR) reconstruction algorithm based on neighborhood embedding preserves the local geometric structure of image block manifold to reconstruct high-resolution (HR) manifold. However, when the magnification is large, the low resolution (LR) image is seriously degraded and most of the information is lost after down-sampling. The neighborhood relation of the LR manifold can not reflect the inherent data structure. In order to solve the problem effectively, we propose a face image SR algorithm based on pre-amplification non-negative restricted neighborhood embedding. In the training phase, the LR image is pre-amplified so that there are more similar manifold structures between the HR and LR resolution images. The constraints of the reconstructed coefficients are loosened and the HR image blocks are iteratively updated to obtain the reconstructed weights. The experimental results show that the proposed method has a better reconstruction effect compared with some traditional learning algorithms.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2018, 66, 6; 899-905
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Multimodal face recognition method with two-dimensional hidden Markov model
Autorzy:
Bobulski, J.
Powiązania:
https://bibliotekanauki.pl/articles/201711.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
pattern recognition
biometrics
3D face recognition
hidden Markov model
rozpoznawanie wzorców
biometria
rozpoznawanie twarzy 3D
ukryty model Markowa
Opis:
The paper presents a new solution for the face recognition based on two-dimensional hidden Markov models. The traditional HMM uses one-dimensional data vectors, which is a drawback in the case of 2D and 3D image processing, because part of the information is lost during the conversion to one-dimensional features vector. The paper presents a concept of the full ergodic 2DHMM, which can be used in 2D and 3D face recognition. The experimental results demonstrate that the system based on two dimensional hidden Markov models is able to achieve a good recognition rate for 2D, 3D and multimodal (2D+3D) face images recognition, and is faster than ICP method.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2017, 65, 1; 121-128
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Ensemble of classifiers based on CNN for increasing generalization ability in face image recognition
Autorzy:
Szmurło, Robert
Osowski, Stanisław
Powiązania:
https://bibliotekanauki.pl/articles/2173680.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
CNN
ensemble of classifiers
face recognition
feature selection
convolutional neural networks
splotowe sieci neuronowe
zespół klasyfikatorów
rozpoznawanie twarzy
wybór funkcji
Opis:
The paper considers the problem of increasing the generalization ability of classification systems by creating an ensemble of classifiers based on the CNN architecture. Different structures of the ensemble will be considered and compared. Deep learning fulfills an important role in the developed system. The numerical descriptors created in the last locally connected convolution layer of CNN flattened to the form of a vector, are subjected to a few different selection mechanisms. Each of them chooses the independent set of features, selected according to the applied assessment techniques. Their results are combined with three classifiers: softmax, support vector machine, and random forest of the decision tree. All of them do simultaneously the same classification task. Their results are integrated into the final verdict of the ensemble. Different forms of arrangement of the ensemble are considered and tested on the recognition of facial images. Two different databases are used in experiments. One was composed of 68 classes of greyscale images and the second of 276 classes of color images. The results of experiments have shown high improvement of class recognition resulting from the application of the properly designed ensemble.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2022, 70, 3; art. no. e141004
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies